色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

When it comes to cutting chips, everyone is familiar. Experienced production personnel can infer the capacity and primary machining types of a machine shop based on the quantity and shape of chips produced. Optimizing chip control is a crucial topic in tool machining. Today, we will provide a simple analysis of chips and common methods for optimizing chip control.

Effective cutting chip control should avoid causing damage to the workpiece, tools, and operators; prevent production interruptions; and eliminate chip disposal issues.

5 Methods of Optimizing Cutting Chip Control between Cost and Efficiency 2

What factors affect chip formation?

Good chip formation can produce spiral short chips, which are generally believed to ensure longer tool life, easier chip handling and disposal, higher surface quality of machined parts, and a stable, reliable, and efficient cutting process. Simply put, ideal chips should be of a manageable size and require minimal effort during their formation.

In practice, numerous factors influence chip formation, including the shape of the tool, cutting conditions, material of the part, and cooling method.

Factors related to part material include the hardness and tensile strength of the workpiece, ductility, and structural considerations. These factors cannot be modified, but their impact on cutting chip formation must be considered.

The influence of the cooling system on chip formation is quite variable. Key tool characteristics include rake angle, cutting edge angle, tool nose radius, and the geometry of the cutting edge and chip breaker groove. Larger rake angles, lower cutting edge angles, and larger tool nose radii tend to produce longer chips. The effect of the coating type on chip formation is not easily defined.

Cutting conditions can intuitively affect chip formation, and altering these conditions is both easy and effective. The primary cutting condition to adjust is the chip thickness ratio or aspect ratio. When the chip thickness ratio is too low, so-called square cutting chips are produced, which impose excessive load on the tool tip, significantly limiting tool life. An excessively high chip thickness ratio results in long, ribbon-like cutting chips that are difficult to break into shorter pieces.

The chip thickness ratio is defined as the cutting width divided by the chip thickness. For a given feed rate, the cutting depth should be sufficiently large to avoid excessively low or high chip thickness ratios. Small cutting depths combined with certain feed rates produce square chips. Conversely, excessively small feed rates can lead to unbreakable ribbon-like chips.

In practical operations, cutting depth is usually fixed. In this case, the feed rate becomes crucial for good chip formation. Avoiding excessively low feed rates prevents long ribbon-like chips, while avoiding excessively high feed rates prevents the formation of square chips.

 

Chip Morphology

Cutting chips can be defined into four different types based on their cross-section:

Serrated, segmented, or discontinuous chips

Serrated or segmented cutting chips, also known as discontinuous chips, are semi-continuous chips with large areas of low shear strain and localized, small areas of high shear strain. This type of chip is commonly observed when machining materials with low thermal conductivity and strong strain-hardening characteristics. For example, when machining materials like titanium, the strength of the material increases under stress, especially under the combined effects of high temperature and stress. The appearance of these cutting chips is characterized by a serrated pattern.

Continuous cutting chips

Continuous chips are typically produced when machining ductile materials, such as low-carbon steel, copper, and aluminum alloys. Continuous cutting chips are difficult to handle and dispose of, as they can form very long spirals or coils around the workpiece and tool, posing a potential hazard to operators when they break. The prolonged contact time with the tool surface generates more frictional heat. Using chip breakers can effectively address this issue.

Built-up edge chips

When small particles of the workpiece material adhere to the cutting edge of the tool, a so-called built-up edge (BUE) is formed. This primarily occurs with soft and ductile workpiece materials, especially when forming continuous cutting chips. BUE can affect the cutting performance of the tool. These accumulations are very hard and brittle, and as layers of material build up, their stability decreases. When the BUE eventually breaks off, part of it is carried away with the chips to the tool surface, while another part remains on the machined surface, increasing surface roughness.

By increasing the cutting speed, using tools with a positive rake angle and sharper edges, applying coolant, and selecting cutting materials with lower chemical affinity to the workpiece material, the formation of BUE can be effectively reduced.

Shear chips

Shear chips or short chips, also known as discontinuous chips, consist of small segments that are separated from each other. These chips typically form when machining brittle materials such as bronze, hard brass, gray cast iron, and materials that are very hard or contain hard inclusions and impurities. Brittle materials lack sufficient ductility for significant plastic deformation during chip formation, leading to repeated fracturing that limits the extent of chip deformation.

Short chips

In less stable machine tools, short cutting chips may cause micro-vibrations during the machining process due to their intermittent formation. One advantage of these chips is that they are easier to handle and clean. When these chips form in brittle materials, such as bronze and gray cast iron, they often result in good surface finish, lower power consumption, and reasonable tool life. However, for ductile materials, discontinuous chips can lead to poorer surface finish and increased tool wear.

5 Methods of Optimizing Cutting Chip Control between Cost and Efficiency 3

Cross-sections of different chip forms

5 Methods of Optimizing Cutting Chip Control between Cost and Efficiency 4

Examples of chip and built-up edge (BUE) formations under different cutting speeds and chip forms in various workpiece materials:

1.Continuous Chips in Carbon Steel

2.Serrated Chips in Duplex Stainless Steel

3.Built-Up Edge (BUE) in Carbon Steel

4.Carbon steel can develop built-up edge (BUE) chip

Discontinuous Chips in Cast Iron

Cast iron typically forms discontinuous cutting chips, consisting of fragmented segments. This occurs due to the brittle nature of cast iron, limiting its ability to form continuous chips during machining.

 

Geometric Shapes of Chip Breakers

Long and continuous cutting chips can adversely affect machining efficiency and pose risks of damaging tools, workpieces, and machine tools. Moreover, issues with cutting chip disposal can lead to unnecessary downtime during production and pose safety hazards to operators. To ensure safety, facilitate chip handling, and prevent damage to machine tools and workpieces, it’s crucial to break these long cutting chips into smaller segments.

Chips bend or curl during formation due to various factors, including:

1.Stress distribution within primary and secondary shear zones.

2.Thermal effects.

3.Strain-hardening characteristics of the workpiece material.

4.Geometric shape of the cutting tool.

The influence of the cooling system also plays a role to some extent.

In essence, reducing the rake angle (using tools with a negative rake angle) tightens the curvature of the cutting chips, making them shorter and more prone to fracture. The function of a chip breaker is to reduce the curvature radius of the cutting chip, thereby promoting the fracture of cutting chips into shorter segments.

 

Basic principles of chip breaker groove geometry

The chip break diagram (refer to the diagram below) illustrates the relationship between workpiece material, cutting conditions, chip breaker type, and cutting chip morphology. This diagram indicates factors to consider when selecting cutting depths and feeds to use specific chip breaker types for machining workpiece materials.

The horizontal axis represents the feed rate, which must always be greater than a certain minimum value (the width of the T-land geometry) and should be less than a maximum value (not exceeding half of the tool nose radius). The vertical axis shows the cutting depth, which should always be greater than the tool nose radius to promote good chip formation and avoid square chip issues. Additionally, the cutting depth should not exceed the cutting edge length. In the latter case, a safety factor is recommended, depending on the strength of the cutting edge. For blades, these safety factors vary between 75% of the cutting edge length (for square or rhombic blades) and 20% (for replica blades with smaller top angles).

 

Showcasing the restrictions imposed by tool groove type, chip shape, and cutting forces on feed rate and cutting depth, all of which together constitute the tool's "chip break" zone.
Showcasing the restrictions imposed by tool groove type, chip shape, and cutting forces on feed rate and cutting depth, all of which together constitute the tool’s “chip break” zone.

 

Cutting depth and feed rate (referred to as chip thickness ratio) must be kept within certain limits. The maximum chip thickness ratio should be maintained below a certain maximum value to avoid excessively long ribbon-like chips. The chip thickness ratio should also be maintained above a minimum value to prevent square chips from forming. These limits are depicted in the diagram with two diagonal lines. The minimum and maximum values of the chip thickness ratio depend on the workpiece material. To minimize cutting edge damage, cutting forces should not be too high. This constraint is represented by a curved line in the diagram.

Within the blue region of the diagram, every combination of feed rate and cutting depth can produce properly shaped chips. Choosing combinations outside the blue region will result in improper chip formation and may lead to excessively long or square chips, or excessive cutting edge damage.

The influence of cutting speed on chip formation
The influence of cutting speed on chip formation

 

The diagram above illustrates the influence of cutting speed on chip formation. The horizontal axis represents the feed rate, and the vertical axis represents the type of chip. Typically, as the feed rate increases, chips tend to become shorter, especially at low cutting speeds. However, as cutting speed increases, the relationship between feed rate and chip formation diminishes.

 

Five Methods for Optimizing Chip Control

1.Determine the priority criterion for process optimization: productivity or cost considerations.

2.If the chip shape is acceptable, go to step 5.

If the chips are too long, go to step 3.

If the chips are too short, go to step 4.

3.If productivity is key, increase the feed rate.

If cost efficiency is key, switch to a stronger chip breaker.

Keep the feed rate within the chip breaker’s range.

Go to step 5.

4.If productivity is key, switch the chip breaker to a sharper one.

If cost considerations are key, reduce the feed rate.

Keep the feed rate within the chip breaker’s range.

Go to step 5.

5.If cost considerations are prioritized, reduce the cutting speed.

If productivity is prioritized, increase the cutting speed.

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 亚洲美脚一区二区三区-亚洲一区二区三区在线激情-国产精品日韩精品在线-丰满少妇高潮在线观看| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 岳的大肥屁熟妇五十路99-偷拍美女解手视频精品-日韩欧美一区二区三区精品-亚洲国产精品成人自拍| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 不卡一区二区三区视频-国产亚洲91精品色在线观看-国产精品青草久久福利不卡-国产黄色免费精品网站| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 亚洲美脚一区二区三区-亚洲一区二区三区在线激情-国产精品日韩精品在线-丰满少妇高潮在线观看| 男女激情四射午夜福利视频网站-人成午夜免费毛片直接观看-日本女优在线观看一区二区-青草国内精品视频在线观看| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 欧美精品香蕉视频在线观看-国产成人久久精品一区二区三区-亚洲国产日本在线观看-五月婷婷丁香综合在线观看| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 色男人天堂综合久久av-蜜桃精品一区二区三区蜜桃臀-国产粉嫩高中生第一次不戴套-成人激情自拍视频在线观看| 国产一区二区精品在线播放-亚洲欧美精品伊人久久-亚洲精品日韩在线播放-国产精品色av一区二区三区| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频|