色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The wear resistance and toughness of carbide woodworking tools are difficult to balance. Usually, tool users can only choose the appropriate grade from many carbide grades based on the specific processing object. Here, we discuss how to further improve the cutting performance of carbide woodworking tools from the tool itself. Currently, the research hotspots on this issue mainly focus on the following aspects:

Improving the grain size of carbide woodworking tools

By refining the grain size of the hard phase, increasing the surface area between grains, and enhancing the bonding force between grains, the strength and wear resistance of carbide?tool materials can be improved. When the WC grain size is reduced to below submicron size, the hardness, toughness, strength, and wear resistance of the material can be improved, and the temperature required for complete densification can also be reduced. The grain size of ordinary carbides is about 3-5 μm, while that of fine-grained carbides is 1-1.5 μm, and that of ultra-fine-grained carbides can be below 0.5 μm. Compared with ordinary carbides with the same composition, the hardness of ultra-fine-grained carbides can be increased by more than 2 HRA, and the bending strength can be increased by 600-800 MPa.

carbides based on ultra-fine WC grains as the matrix, combined with TiAlN PVD coating, can make the cutting edge of the tool highly ductile during interrupted cutting, while also having extremely strong resistance to thermal deformation.

Surface, overall and cyclic heat treatment for carbide woodworking tools

Surface treatment such as nitriding and boriding can effectively improve the wear resistance of carbide?with good toughness. Overall heat treatment can change the composition and structure of the binding phase in carbide?with good wear resistance but poor toughness, reduce the adjacency of WC hard phase, and thus improve the strength and toughness of carbide. The cyclic heat treatment process can relieve or eliminate the stress between grain boundaries, which can comprehensively improve the performance of carbide?materials.

Improving cutting performance by adding rare metals Adding rare metal carbides such as TaC and NbC to carbide?materials can form a complex solid solution structure with the existing hard phase WC, further strengthen the hard phase structure, and also suppress the growth of hard phase grains and enhance the uniformity of the structure. This is highly beneficial for improving the overall performance of carbide. In the ISO standard P, K, and M carbide?grades, there are carbides added with Ta (Nb) C.

carbide woodworking tool

Adding rare earth elements to carbide material

Adding a small amount of rare earth elements such as yttrium to carbide materials can effectively improve the toughness and bending strength of the material, and also improve the wear resistance. This is because rare earth elements can strengthen the hard and binding phases, purify grain boundaries, and improve the wetting of carbide solid solution on the binding phase. carbides added with rare earth elements are most suitable for rough machining, and with abundant rare earth resources in China, they have broad prospects for application in the production of carbide woodworking tools.

Coated carbide woodworking tools

A thin layer of wear-resistant metal compounds, such as TiN and TiC, can be deposited on a tough carbide?substrate using methods such as CVD (chemical vapor deposition), PVD (physical vapor deposition), PVCD (plasma-enhanced chemical vapor deposition), and HVOF (high-velocity oxy-fuel spraying). TiC has high hardness (HV3200) and good wear resistance, so the coating thickness is generally 5-7μm. TiN has lower hardness (HV1800~2100) and lower adhesion to the substrate, but it has good thermal conductivity and high toughness. The coating thickness can reach 8-12μm, and it can combine the toughness of the substrate with the wear resistance of the coating, thereby improving the overall performance of the carbide?tool. Coated carbide?tools have the following advantages:

  1. Good wear resistance and heat resistance, especially suitable for high-speed cutting;
  2. Coated carbidetools have strong resistance to chipping and notch wear, and the tool shape and groove shape are stable;
  3. The chip breaking effect and other cutting performance are good, which is beneficial to the automatic control of the machining process.
  4. After passivation and refining treatment, the substrate of coated carbide tools has high dimensional accuracy, which can meet the requirements of automatic machining for tool change positioning accuracy. However, the use of coating methods still cannot fundamentally solve the problem of poor toughness and impact resistance of carbide substrate materials.

Nanocoating

Nanocoating is a rapidly developing new coating technology in recent years. The grain size of the coating material is generally below 100 nm and it has good cutting performance. In the coating, the surface smoothness of the coating is improved by grain refinement technology, so that the coating surface is smooth, which can improve the anti-friction and anti-adhesion ability of the coating tool. A CVD coating composed of nanoscale TiCN with inhibited crystal growth and nanoscale Al2O3 with inhibited crystal growth can be selected for the front cutting surface. The coating has extremely high toughness and wear resistance. Applying ultra-fine grain TiCN on a special carbide substrate improves the adhesion between the coating and the substrate. Then, an ultra-fine and super smooth FF aluminum-based film is coated on top of it, which increases the surface hardness by 30% and reduces the roughness value by 50%. Compared with ordinary carbides, nanocoating improves processing efficiency by 1.5 times and extends the life of carbide woodworking tools by more than 2 times.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 2

Diamond Coatings

Coating the front surface of a carbide?insert with a CVD diamond film (20μm thick) is a good choice. Although coating peeling can become a serious problem, as long as the coating does not peel, tool wear can be ignored and maintained at 40-50μm. The milling test of medium-density fiberboard using a diamond-coated carbide?insert shows that the diamond film has different degrees of peeling, but the unpeeled film always provides good protection. The tool wear resistance of the diamond coating is nearly twice as high as that of the uncoated one.

With the improvement of coating technology and equipment, the adhesion between the diamond film and the tool substrate will be further improved, and the problem of film peeling will be improved. At present, diamond-coated carbide?materials have been used to manufacture tools for processing reinforced flooring, which is used to cut the aluminum oxide wear-resistant layer on the surface of the reinforced flooring, and the effect is good. However, the purity of CVD diamond polycrystalline film is very high, its hardness (HV9000~1000) is close to natural diamond, and its processability is poor. It is difficult to achieve conventional mechanical processing or electrochemical corrosion. Therefore, diamond-coated carbide?materials are suitable for manufacturing insert blades that do not require regrinding.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 3

Conclus?o

Carbide woodworking tools have become the main variety in the wood processing industry and will continue to occupy an important position in wood cutting for a considerable period in the future. With the continuous improvement of various carbide performance improvement technologies and coating technologies, the cutting performance of carbide woodworking tools will continue to improve.

 

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 国产av一区二区三区在线-亚洲国产欧洲在线观看-跪求能看的国产熟女av网-国内色精品视频在线网址| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 无套进入极品美女少妇-新久久久高清黄色国产-国产肥臀在线精品一区二区-深夜午夜福利在线观看| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 午夜视频在线观看色诱-久久精品午夜福利视频-熟妇人妻av一区二区三区-一区二区三区中文字幕在线观看| 午夜性福福利视频一区二区三区-午夜福利在线看片在线-欧洲内射免费人文艺术-亚洲天堂成人av在线| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 久久国产精品国产婷婷-四虎在线观看最新入口-天堂中文资源在线天堂-久久亚洲av日韩av天堂| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 免费av毛片在线观看-av大全网站免费一区二区-欧美激情亚洲一区中文字幕-亚洲中文字幕久久精品|