色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Titanium alloy has a high specific strength among structural metallic materials, with a strength comparable to steel but only 57% of its weight. Additionally, titanium alloy has characteristics such as low density, high thermal strength, thermal stability, and good corrosion resistance. However, titanium alloy materials pose challenges in terms of machining difficulties and low processing efficiency. Therefore, overcoming the difficulties and low efficiency in titanium alloy processing has always been an urgent problem in need of solutions.

Reasons for the difficulty in processing titanium alloy

1Low thermal conductivity: Titanium alloy has a low thermal conductivity, resulting in high cutting temperatures during machining. Under the same conditions, the cutting temperature of TC4 alloy is more than twice as high as that of Grade 45 steel. The heat generated during machining is difficult to dissipate from the workpiece. Consequently, the cutting tools experience high temperatures, rapid wear of cutting edges, and reduced tool life.

2Low modulus of elasticity: Titanium alloy has a low modulus of elasticity, leading to significant springback on the machined surface. This is especially pronounced when machining thin-walled components, resulting in strong friction between the trailing edge of the cutting tool and the machined surface, leading to tool wear and chipping.

3Chemical reactivity: Titanium alloy exhibits strong chemical reactivity. At high temperatures, it readily reacts with oxygen, hydrogen, and nitrogen, causing an increase in strength and a decrease in ductility. The oxygen-enriched layer formed during heating and forging processes further complicates mechanical machining.

Why is titanium alloy difficult to process? 2

Principles of Machining Titanium Alloy Materials

During the machining process, the choice of tool material, cutting conditions, and machining time all have an impact on the efficiency and cost-effectiveness of cutting titanium alloys.

1.Selecting appropriate tool materials

Considering the properties of titanium alloy materials, machining methods, and processing conditions, the selection of tool materials should be done rationally. The tool material should be commonly used, cost-effective, have good wear resistance and high thermal hardness, and possess sufficient toughness.

2.Improving cutting conditions

The rigidity of the machine tool-fixture-tool system should be enhanced. Clearances between different parts of the machine tool should be adjusted properly, and the radial runout of the spindle should be minimized. The workpiece should be securely clamped in the fixture, ensuring sufficient rigidity. The cutting portion of the tool should be kept as short as possible, and the thickness of the cutting edge should be increased, while ensuring sufficient chip space, in order to enhance the strength and rigidity of the tool.

3Apply appropriate heat treatment to the workpiece material

By employing heat treatment, the properties and metallographic structure of titanium alloy materials can be altered, aiming to improve their machinability.

4Choose appropriate cutting parameters

The cutting speed should be kept low. This is because the cutting speed has a significant impact on the temperature of the cutting edge. Higher cutting speeds result in a drastic increase in cutting edge temperature, which directly affects the tool life. Therefore, it is crucial to select an appropriate cutting speed.

titanium alloy

Machining Techniques

1.Turning

Turning titanium alloy products can achieve good surface roughness and minimal work hardening. However, it leads to high cutting temperatures and rapid tool wear. To address these characteristics, the following measures are taken mainly in terms of tooling and cutting parameters: Tooling material: YG6, YG8, YG10HT are selected based on the existing conditions in the factory. Tool geometry parameters: Appropriate rake and relief angles, as well as rounded cutting edges. Lower cutting speeds, moderate feed rates, deeper cutting depths, sufficient cooling. When turning the outer diameter of the workpiece, the tool tip should not be positioned above the workpiece center to avoid tool interference. For finishing and turning thin-walled parts, a larger main rake angle is used, typically ranging from 75 to 90 degrees.

Why is titanium alloy difficult to process? 3

2.Milling

Milling titanium alloy products is more challenging compared to turning because milling involves intermittent cutting, and the chips tend to adhere to the cutting edge. When the chip-adhered teeth re-engage with the workpiece, they can dislodge and take away a small portion of the tool material, leading to tool edge failure and significantly reducing tool durability.

Milling method: Generally, conventional milling is employed. Tooling material: High-speed steel M42. Conventional alloy steel processing does not usually utilize conventional milling due to the influence of machine tool screw and nut clearances. In conventional milling, the milling cutter acts on the workpiece, generating a cutting force in the feed direction that can cause intermittent worktable movement, resulting in chattering. For conventional milling, the cutting edges encounter a hardened surface at the initial entry, which can lead to tool damage. However, in climb milling, the chips go from thin to thick, and initially, the tool may experience dry friction with the workpiece, exacerbating chip adhesion and tool edge failure. To ensure smooth milling of titanium alloys, attention should be given to reducing the rake angle and increasing the relief angle compared to standard milling cutters. Milling speed should be low, and the use of sharp-toothed milling cutters is preferred while avoiding the use of face milling cutters.

3Threading

Threading titanium alloy products can result in larger surface roughness values and higher torque due to the fine chips that easily adhere to the cutting edge and workpiece. Improper selection and handling of the tap can lead to work hardening, extremely low processing efficiency, and occasional tap breakage.

It is necessary to prioritize the use of high-quality taps with appropriate tooth engagement. The number of teeth on the tap should be fewer than standard taps, usually around 2 to 3 teeth. The cutting cone angle should be large, and the tapered portion is generally 3 to 4 times the thread pitch length. To facilitate chip evacuation, a negative rake angle can be ground on the cutting cone section. Selecting shorter taps can increase tap rigidity. The reverse tapered portion of the tap should be appropriately enlarged compared to standard taps to reduce friction between the tap and the workpiece.

4Reaming

When reaming titanium alloy, tool wear is not severe, and both carbide and high-speed steel reamers can be used. When using carbide reamers, it is necessary to adopt a similar process system rigidity as in drilling to prevent reamer breakage. The main problem encountered when reaming titanium alloy holes is poor surface finish. It is necessary to narrow the cutting edge width with an oilstone to avoid adhesion between the edge and the hole wall, while ensuring sufficient strength. Generally, a cutting edge width of 0.1 to 0.15 mm is preferred.

The transition between the cutting edge and the calibration section should be a smooth arc, and it should be promptly reground after wear. It is important to ensure consistent size of the circular arcs on each tooth. If necessary, the size of the calibration section can be increased.

5.Drilling

Drilling titanium alloy is relatively challenging and often encounters issues such as tool burning and drill breakage during the machining process. This is mainly caused by factors such as poor tool grinding, inadequate chip evacuation, insufficient cooling, and poor process system rigidity. Therefore, attention must be paid to proper tool grinding in titanium alloy drilling. This includes using a large point angle, reducing the front angle of the outer edge, increasing the back angle of the outer edge, and adding a reverse taper to the drill point 2-3 times that of a standard drill.

Why is titanium alloy difficult to process? 4

Frequent tool retraction and timely removal of chips are important, and the shape and color of the chips should be observed. If feather-like chips or color changes occur during drilling, it indicates that the drill bit is dull and should be promptly replaced or reground.

The drill fixture should be securely fixed on the worktable, and the guiding cutting edge of the drill should be close to the work surface. Using shorter drill bits is preferable. Another important consideration is when using manual feed, the drill bit should neither advance nor retreat in the hole, as this can cause friction between the drill edge and the work surface, resulting in work hardening and dulling of the drill bit.

6.Grinding

Common issues encountered in grinding titanium alloy components are clogging of the grinding wheel due to chip adhesion and surface burn on the components. The poor thermal conductivity of titanium alloy is the main reason for generating high temperatures in the grinding zone, resulting in adhesion, diffusion, and intense chemical reactions between titanium alloy and the abrasive material. Chip adhesion and clogged grinding wheel significantly decrease the grinding ratio. Diffusion and chemical reactions further lead to surface burn on the workpiece, resulting in reduced fatigue strength, which is particularly evident when grinding titanium alloy castings.

To address this problem, the following measures are taken:

  • Select appropriate grinding wheel materials: Green silicon carbide TL. Slightly lower wheel hardness: ZR1.
  • Control the cutting parameters of titanium alloy materials during grinding, including tool materials, cutting fluid, and process parameters. This is essential for improving the overall efficiency of titanium alloy material machining.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

亚洲欧美日韩久久精品专区-99午夜福利一区二区-亚洲国产毛片一区二区三区-人妻自拍视频在线播放| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 91国际精品麻豆视频-蜜臀av国产在线观看-av一区二区三区精品-人妻精品一区二区三区av| 99一区二区三区精品人妻-国产污视频网站在线观看-伊人激情av一区二区三区-天堂av大片免费观看| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 精品人妻在线一区二区三区-国内av在线免费观看-亚洲av影片一区二区三区-久久精品女同亚洲女同13| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 91偷自产一区二区三区精品-亚洲av一区二区三区中文-国产一级黄色性生活片-最近中文字幕在线一区二区三区| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 视频一区二区不中文字幕-亚洲av色香蕉一区二区三区妖精-国产91精品在线观看懂色-国产一区二区三区不卡在线看| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 亚洲av乱码久久观看-亚洲爆码一区二区三区-91亚洲国产精品视频-黑丝美女被爆操流白浆| 亚洲av午夜福利精品一区二区-久久精品国产亚洲熟女-亚洲综合五月婷婷六月丁香-久久国内精品自在自线91| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 女优av天堂中文字幕-国产亚洲精品成人av久-国产黄三级三级三级三级一区二区-日本高清视频不卡一区二区| 91免费视频国产自拍-亚洲av 综合一区二区人妖-青青草草青青在线播放-欧美精品免费一区二区二区| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 亚洲美脚一区二区三区-亚洲一区二区三区在线激情-国产精品日韩精品在线-丰满少妇高潮在线观看| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 亚洲日本国产一区二区三区-日日噜噜夜夜狠狠免费-亚洲不卡在线视频观看-亚洲成年网站青青草原|