色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The welding characteristics of austenitic stainless steel: the elastic and plastic stress and strain are very large in the welding process, but there are few cold cracks. There is no quenching hardening zone and grain coarsening in welded joint, so the tensile strength of weld is high.

The main problems of austenitic stainless steel welding are: large welding deformation; because of its grain boundary characteristics and sensitivity to some trace impurities (s, P), it is easy to produce hot cracks.

Five major welding problems and treatment measures of austenitic stainless steel

The formation of chromium carbide reduces the intergranular corrosion resistance of welded joints

Intergranular corrosion: according to the theory of poor chromium, when the weld and heat affected zone are heated to 450 ~ 850 ℃ sensitization temperature zone, chromium carbide precipitates on the grain boundary, resulting in poor chromium grain boundary, which is not enough to resist corrosion. Zero

(1) The following measures can be adopted to limit the intergranular corrosion of weld and the corrosion of sensitized temperature zone on the target material

a. In order to avoid the formation of Cr23C6, stabilizing elements such as Ti and Nb were added to the base metal to reduce the carbon content in the base metal and weld.

b. The dual phase structure of austenite and a small amount of ferrite is formed in the weld. When there is a certain amount of ferrite in the weld, the grain size can be refined, the grain area can be increased, and the amount of chromium carbide precipitation per unit area of grain boundary can be reduced.

Cr23C6 is preferentially formed in ferrite instead of poor chromium at austenite grain boundary; ferrite between austenite can prevent corrosion from diffusing into interior along grain boundary.

c. Control the residence time in the sensitization temperature range. Adjust the welding thermal cycle to shorten the residence time of 600-1000 ℃ as much as possible. The welding method with high energy density (such as plasma argon arc welding) can be selected. The welding line energy is smaller. Argon gas is applied to the back of the weld or copper pad is used to increase the cooling rate of the welded joint. The number of arc striking and arc stopping is reduced to avoid repeated heating. The contact surface between multi-layer welding and corrosive medium is as last as possible Welding, etc.

d. After welding, solid solution treatment or stabilization annealing (850-900 ℃) should be carried out after heat preservation and air cooling to fully precipitate carbide and accelerate chromium diffusion.

(2) For this reason, the following preventive measures can be taken:

Due to the strong diffusion ability of carbon, it will segregate in the grain boundary and form supersaturation state during cooling, while Ti and Nb will remain in the crystal due to the low diffusion ability. When the welded joint is reheated in the sensitized temperature range, the supersaturated carbon will precipitate in the form of Cr23C6.

a. Reduce carbon content. For stainless steel containing stabilizing elements, the carbon content should not exceed 0.06%.

b. Adopt reasonable welding process. In order to reduce the residence time of overheated zone at high temperature, a smaller welding line energy should be selected to avoid “medium temperature sensitization” effect in the welding process.

In case of double side welding, the weld contacting with corrosive medium should be welded last (this is the reason why internal welding of large diameter thick wall welded pipe is carried out after external welding). If it cannot be implemented, the welding specification and weld shape should be adjusted to avoid the overheated area contacting with corrosive medium from being sensitized again.

c. Post weld heat treatment. After welding, solid solution or stabilization treatment shall be carried out.

Why do You Having Problems Frequently when Welding Stainless Steel? 2

Stress corrosion cracking

The following measures can be taken to prevent the occurrence of stress corrosion cracking:

a. Correct selection of materials and reasonable adjustment of weld composition. High purity chromium nickel austenitic stainless steel, high silicon chromium nickel austenitic stainless steel, ferrite austenite stainless steel and high chromium ferrite stainless steel have good stress corrosion resistance. When the weld metal is austenitic ferrite dual phase steel, the stress corrosion resistance is good.

b. Eliminate or reduce the residual stress. The surface residual stress was reduced by polishing, shot peening and hammering.

c. Reasonable structural design. In order to avoid large stress concentration.

Why do You Having Problems Frequently when Welding Stainless Steel? 3

Welding hot crack (weld crystallization crack, HAZ liquefaction crack)

The hot crack sensitivity mainly depends on the chemical composition, microstructure and properties of the material. Ni is easy to form low melting point compounds or eutectic with impurities such as s and P. segregation of boron and silicon will promote hot cracking.

It is easy to form coarse columnar crystal structure with strong directivity, which is conducive to the segregation of harmful impurities and elements, thus promoting the formation of continuous intergranular liquid film and improving the sensitivity of hot cracking. If the welding is heated unevenly, it is easy to form large tensile stress and promote the generation of welding hot cracks.

Preventive measures:

a. The contents of harmful impurities s and P should be strictly controlled.

b. Adjust the structure of weld metal. The δ phase in the weld can refine the grain size, eliminate the directionality of single-phase austenite, reduce the segregation of harmful impurities in the grain boundary, and the δ phase can dissolve more s and P, reduce the interface energy and form the liquid film between grains.

c. Adjust the composition of weld metal alloy. The sensitivity to hot cracking can be reduced by adding Mn, C, N and trace elements such as cerium, pickaxe and tantalum in single phase austenitic steel.

d. Process measures. In order to prevent the formation of coarse columnar grains, the small heat input and small cross-section weld bead should be used.

For example, 25-20 austenitic steel is prone to liquefying cracks. By strictly limiting the impurity content and grain size of the base metal, adopting high energy density welding method, small line energy and increasing the cooling rate of the joint, etc.

Why do You Having Problems Frequently when Welding Stainless Steel? 4

Embrittlement of welded joint

The plasticity of welded joint should be guaranteed for hot strength steel to prevent high temperature embrittlement; low temperature steel should have good low temperature toughness to prevent brittle fracture of welded joint at low temperature.

Welding deformation is large

Due to the low thermal conductivity and large expansion coefficient, the welding deformation is large, so the fixture can be used to prevent deformation. Selection of welding methods and welding materials for austenitic stainless steel: austenitic stainless steel can be welded by TIG, MIG, paw and saw.

The welding current of austenitic stainless steel is small because of its low melting point, small thermal conductivity and high resistance coefficient. Narrow weld and narrow pass should be used to reduce high temperature residence time, prevent carbide precipitation, reduce weld shrinkage stress and reduce hot crack sensitivity.

The composition of welding material, especially Cr and Ni, is higher than that of base metal. The welding material containing a small amount of ferrite (4-12%) is used to ensure good crack resistance (cold cracking, hot cracking and stress corrosion cracking) of the weld.

When ferrite phase is not allowed or impossible to exist in the weld, the welding material containing Mo, Mn and other alloy elements should be selected.

C, s, P, Si and Nb in welding materials should be as low as possible. NB may cause solidification cracks in pure austenite weld, but a small amount of ferrite in the weld can be effectively avoided.

Nb containing welding materials are usually used for welding structures which need to be stabilized or stress relieved after welding. When submerged arc welding is used to weld medium plate, the burning loss of Cr and Ni can be supplemented by the transition of alloy elements in flux and welding wire;

Due to the deep penetration, attention should be paid to prevent the formation of hot cracks in the central zone of the weld and the reduction of corrosion resistance in the heat affected zone. Attention should be paid to the selection of thinner welding wire and smaller welding line energy. The welding wire should be low in Si, s and P.

The ferrite content in weld of heat-resistant stainless steel should not be more than 5%. For austenitic stainless steel with more than 20% Cr and Ni, high Mn (6-8%) welding wire and alkaline or neutral flux should be selected to prevent Si addition to weld and improve its crack resistance.

The special flux for austenitic stainless steel increases little Si, which can transfer alloy to the weld and compensate the burning loss of alloy elements to meet the requirements of weld performance and chemical composition.

Why do You Having Problems Frequently when Welding Stainless Steel? 5
亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 少妇被爽到高潮喷水在线播放-国产精品中文字幕在线不卡-中文字幕不卡一区二区三区-精品国产一二三区在线观看| 91精品啪在线观看国产91蜜桃-国产国拍亚洲精品av在线-日韩在线亚洲清纯av天堂-久久亚洲国产精品五月天| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 粉嫩小粉嫩小国产小视-老熟妇人妻久久中文字幕麻豆网-蜜臀av在线播放国产-成年人的三级视频网站| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 国产精品午夜福利免费在线-99热首页这里只有精品-国产一区二区三区精品观看-宅男午夜一区二区三区| 精品人妻一区二区三区四区石在线-国产精品国产三级国产三级人妇-午夜激情精品在线观看-一本久道视频蜜臀视频| 亚洲精品在线观看蜜臀-亚洲日本va中文字幕久久-欧美不雅视频午夜福利-日韩卡一卡二卡三卡四| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| 国产精品免费av一区二区-91在线日本在线观看-免费在线激情视频网址-亚洲午夜福利影院在线免费观看| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 加勒比中文字幕久久av-久久黄色美女三级久一点黄-国产精品无套高潮久久-久久婷婷综合色拍亚洲| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 国产熟女av中文字幕-国产星空传媒视频在线观看-久久精品在线精品视频-亚洲国产av卡一卡二| 国产精品亚洲精品午夜-欧美日韩成人精品久久二区-自拍偷拍福利视频在线观看-91精品蜜桃一区二区三区| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 国产午夜视频在线观看720p-成人深夜福利av在线-一区二区日韩精品教师学生-亚洲一区二区三区美臀在线播放| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码|