色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Coarse-grain WC powder possesses special properties and specific uses, especially high-temperature coarse-grain WC, which boasts a range of advantages such as fewer structural defects, high microhardness, minimal microscopic strain, and more. As a result of these benefits, it is gaining increasing attention in the field of powder metallurgy.

The characteristics of coarse-grain WC

Compared to regular carbides, coarse-grain carbides possess the following characteristics:

1High Hardness

WC belongs to the hexagonal crystal system with anisotropic crystal structure. Its physical and mechanical properties vary based on the crystal plane orientation or Miller indices. Particularly, its hardness exhibits strong anisotropy. The Vickers hardness (HV) values for the basal {0001} plane and edge {1100} plane are HV2100 and HV1080, respectively (Figure 1). Due to the more than twofold difference in hardness between the {0001} and {1100} planes, in coarse-grain carbides where the proportion of WC grains with higher {0001} plane hardness is significant, the overall hardness increases. Consequently, carbides containing coarse-grain WC demonstrate elevated wear resistance.

What is the Current Research State on Coarse-grain WC? 1

Figure 1: Morphology model of WC grains.

2Good Toughness

In conventional carbides, fine microcracks propagate primarily along the weakest interfaces such as WC/WC grain boundaries or WC/Co interfaces. In coarse-grain carbides, these microcracks tend to propagate in a zigzag pattern around the coarse WC grains. The presence of coarse WC grains impedes the further propagation of these microcracks, enhancing the fracture toughness of the carbide.

3High-Temperature Hardness,Low High-Temperature Creep Deformation

At elevated temperatures of 1000 ℃, the high-temperature hardness of coarse-grain carbides surpasses that of regular carbides, demonstrating excellent hot hardness. For carbides with a certain cobalt content, coarse-grain WC carbides exhibit greater resistance to thermal deformation compared to standard carbides.

4Low Production Costs of coarse-grain WC

Anisotropic coarse-grain carbides can be produced using conventional sintering techniques, eliminating the need for additional methods like hot pressing. As a result, production costs are reduced.

 

Toughening mechanism of coarse-grain WC

The mechanism behind WC-toughened carbides primarily results from the enlargement of WC grain size, which enhances the diversion and branching of cracks, thereby increasing the toughness of WC-Co carbides.

1The percentage of WC grain self-fracture area increases with the enlargement of WC grain size, reaching levels above 30%. Relevant studies indicate that the crack resistance of high-carbon carbides is on average 0.6 to 4.9 units higher than that of low-carbon carbides. Additionally, during crack propagation, carbides partially enhance the fracture energy of WC-Co carbides: for low-Co carbides (Co < 10.0%), this increase ranges from 40% to 70%, whereas for carbides containing 15% Co, it decreases to 15% to 20%.

2If the WC grain size is within the range of 1.2 to 6 μm, plastic deformation and flow of WC grains can be observed. When WC grain size exceeds 6 μm, the grains tend to undergo brittle fracture, and the critical strength of WC grains becomes lower than their yield limit.

3With the same cobalt content, polycrystalline carbides have thicker cobalt phases, which should facilitate high-temperature creep deformation. Coarse-grain WC is employed in mining tools worldwide, and the grain size typically ranges from 3.0 to 4.5 μm. In some grades of mining carbides, the strength can even reach 3,500 N/mm2. Figure 2 illustrates the structure of a coarse-grain carbide, and Figure 3 demonstrates the grinding process of such an carbide.

What is the Current Research State on Coarse-grain WC? 2

Figure 2: Structure illustration of coarse-grain carbide

What is the Current Research State on Coarse-grain WC? 3

Figure 3: Illustration of grinding process for coarse-grain carbide

From the structural representation in Figure 2, it’s evident that the cobalt layer in coarse-grain carbides is considerably broad, facilitating plastic deformation of cobalt. This attribute contributes to the exceptional toughness typically observed in coarse-grain carbides. As depicted in Figure 3, the large grain size of coarse-grain carbides results in strong cobalt bonding with WC due to the sizeable cobalt phase relative to the WC grains. This robust bonding makes it difficult for WC grains to be pulled out, leading to excellent wear resistance.

 

The current research status of coarse-grain WC

Internationally, research on carbides for mining applications, much like the study of cutting tool materials, is highly regarded.

1Sweden’s Sandvik company initiated the manufacturing of cemented carbide inserts with WC in 1942. In 1945, the rock drilling bits produced by the company accounted for about 50% of European sales. The company’s research reports indicate that the crucial determinants of carbide performance are the particle size of WC and the mass fraction of cobalt. Wear resistance increases with decreasing WC particle size and cobalt mass fraction. Conversely, toughness improves with larger WC particle sizes and higher cobalt mass fractions, but it’s not feasible to simultaneously enhance both wear resistance and toughness.

2In 1995, the UK’s ZCC Group developed cemented carbide drill bits for rotary rock drilling using metal binders like Cu, Ni, Co, and Fe. The wear ratio was reduced by half compared to bits without Cu-Ni additives. They found that an average hard phase particle size between 2.5 to 3.5 μm yielded particularly favorable conditions. The cemented carbide body contained over 85% WC, with the content of other carbides (such as TiC or TaC) not exceeding 5%.

3Germany began experimental work on cemented carbide rock drill bits with WC before 1946. By around 1998, they developed coarse-grain carbide?drill bits like Gl, N68, G3, and G2, typically with an average grain size of 4 μm.

4An Italian drilling tool company manufactures drill bits using the following carbide?composition: 85% w (W), 10% w (Co), and 5% w (Fe). With their seal sliding bearing drill bits, in extremely hard formations and drilling speeds of 0.5 m/s, the drill bit lifespan reaches 80 to 150 hours.

What is the Current Research State on Coarse-grain WC? 4

4 Preparation methods of coarse-grain WC powder

Traditional methods for producing coarse-grain WC include:

1High-temperature carburization of coarse tungsten powder

This classic method is dominant domestically. It improves WC properties due to extended high-temperature carburization, minimizing lattice defects and microstrain while enhancing WC’s plasticity.

2Mid-temperature reduction and high-temperature carburization of lithium salt-doped tungsten oxide

Emerging in the mid-1980s, this method replaces certain traditional processes. Additives accelerate volatilization and deposition during WO3 reduction, allowing tungsten powder to grow at lower temperatures. Resulting WC is mainly used for mining carbides and cold die carbides.

3High-temperature carburization with cobalt or nickel additives

The addition of small amounts of cobalt, nickel, or their oxides during tungsten powder carbonization alters the carburization mechanism and enhances the process’s speed. The influence of grain size and cobalt content on coarse-grain WC’s production is significant; greater cobalt content yields coarser WC.

4Sodium salt addition method

Sodium salt is added to Ammonium Paratungstate (APT), followed by reduction at high temperatures, producing coarse tungsten powder with grain sizes above 10 μm. Subsequent high-temperature carburization yields coarse WC. This method is employed by the UK’s John Brown Company.

5APT rapid sintering and rapid reduction method

APT is rapidly sintered at 850-1000 ℃ in an oxidative atmosphere, then rapidly reduced at 1100-1300 ℃ in a hydrogen furnace. This produces tungsten powder with a particle size of 25-36 μm.

6Halide boiling layer hydrogen reduction method

Tungsten chloride or fluoride is reduced with H2 in a boiling layer. H2 and raw tungsten powder are fed into the reactor bottom, forming a boiling tungsten layer. Halide vapor is introduced at the reactor’s top, reduced to tungsten powder by H2 at an optimal temperature, and deposited on the original tungsten powder. The process gradually increases the grain size of the original tungsten powder, producing coarse tungsten powder over 40 μm. The United States’ Union Carbide Corporation employs this method to produce coarse tungsten powder in WF6 for rock drilling tool cemented carbides.

7Coarse-grain aluminum thermal process

This patented method produces high-purity, coarse-grain, large-block, single-phase WC crystals directly from tungsten concentrates through highly endothermic reactions. The resulting micron-sized WC is used in various cemented carbides, successfully applied to manufacturing tools for hard rock mining, coal mining, road construction, molds, wear-resistant components, and indexable inserts.

8Tungsten concentrate molten salt carburization (gas injection method)

Developed by the US Bureau of Mines, similar to the aluminum thermal method. Tungsten concentrates are decomposed using Na2SiO3-NaCl melt at 1050-1100 ℃. The generated Na2WO4-NaCl melt separates from the silicate phase containing Fe, Mn, and Ca. Methane is then injected into the melt, producing coarse WC. Cemented carbides (w (Co) 8.25%-10%) produced from this WC by the US Bureau of Mines and Canada’s International Carbide Company have properties similar to those produced by conventional processes.

 

5 Wniosek

With the advancement of technology, the application scope of coarse-grain WC is expanding rapidly, and the demand is growing exponentially, indicating promising market prospects. Currently, research and development of high-quality coarse-grain WC and even large-grain single-crystal WC have become hot topics worldwide. For coarse-grain WC, the research focus has shifted from studying the kinetics of reduction and carburization processes, behavior of trace elements, powder morphology, and particle size to the development of new processing methods and application areas.

These research and development efforts have not only significantly improved the properties of WC but have also led to notable enhancements in the quality and performance of carbide?products.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 久久亚洲av成人久久-国产性色av一区二区-国产三级韩国三级日产三级-国产一二三在线不卡视频| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 欧美精品一区二区三区三州-少妇被五个黑人玩的在线视频-国产亚洲精品a久久7777-亚洲av色香蕉一区二区精品国产| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 国产熟女av中文字幕-国产星空传媒视频在线观看-久久精品在线精品视频-亚洲国产av卡一卡二| 极品尤物在线免费观看-超碰九七精品在线观看-午夜爱爱免费观看视频-日本免费人成黄页在线| 亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 国产91精品一区二区亚洲-国产精品国产三级国产播-久久国产精品免费一区六九堂-五月婷婷六月丁香激情网| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 国内熟妇与亚洲洲熟妇妇-伊人久久亚洲一区二区三区-亚洲av不卡在线短片-午夜国产理论大片高清| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 风韵丰满熟妇老熟女呻吟-亚洲国产丝袜久久久精品一区二区-久久午夜精品一区二区三区-人妻视频精品一区二区三区| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 99热免费在线观看一区-麻豆久久一区二区三区蜜臀av-日本午夜福利在线视频-午夜精品福利综合在线导航| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 日韩性插视频在线观看-岛国在线播放免费av-亚洲午夜精品一区二区蜜桃-国产精品一区二区久久蜜桃麻豆| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 日韩性插视频在线观看-岛国在线播放免费av-亚洲午夜精品一区二区蜜桃-国产精品一区二区久久蜜桃麻豆| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 午夜福利国产原创精品-久久综合激情日本熟妇-国产熟女50岁一区二区-国产另类视频一区在线|