色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The performance of tool breakage

1) Cutting edge micro collapse

When the material structure, hardness and allowance of workpiece are not uniform, the front angle is too large, the cutting edge strength is low, the rigidity of the process system is insufficient to produce vibration, or intermittent cutting is carried out. If the grinding quality of the cutting edge is not good, the cutting edge is prone to micro collapse, that is, the edge area appears small collapse, notch or peeling. In this case, the tool will lose part of its cutting capacity, but it will continue to work. In the process of continuous cutting, the damaged part of the blade area may expand rapidly, leading to greater damage.

2) Chipping of cutting edge or tip

This kind of damage is often produced under the cutting conditions which is worse than the micro collapse of cutting edge, or the further development of micro collapse. The size and range of the broken tool are larger than that of the micro collapse, which makes the tool completely lose cutting ability and has to stop working. The case of a knife tip breaking is often called a tip drop.

3) Broken blade or tool

When the cutting conditions are extremely bad, the cutting amount is too large, there is impact load, and there is micro crack in the blade or tool material. When welding and grinding exist residual stress in the blade, and the operation is not careful, the blade or tool may break. After this kind of damage, the tool can not be used continuously, so it can be scrapped.

4) Blade surface peeling off

For materials with high brittleness, such as cemented carbide, ceramics, PCBN with high tic content, the surface layer is easy to peel off due to defects or potential cracks in the surface structure, or residual stress in the surface due to welding and edge grinding. The peeling may occur on the front surface, and the knife may occur on the back side. The peeling object is flaky and the peeling area is large. The possibility of coating tool peeling is high. After the blade is slightly peeled, it can continue to work, and the cutting ability will be lost after serious peeling.

5) Plastic deformation of cutting parts

Because of the low strength and low hardness, plastic deformation may occur in the cutting parts of the steel and high speed steel. When the cemented carbide works directly at high temperature and three-way compressive stress, the surface plastic flow will also occur, even the plastic deformation surface of cutting edge or cutting edge will collapse. Collapse usually occurs when cutting amount is large and hard material is processed. The elastic modulus of TiC based cemented carbide is smaller than that of WC based cemented carbide, so the former has faster plastic deformation resistance or failure. The plastic deformation of PCD and PCBN will not occur.

6) Hot crack of blade

When the tool is subjected to alternating mechanical and thermal loads, the surface of the cutting part will inevitably produce alternating thermal stress due to repeated thermal expansion and contraction, which will cause the blade to crack due to fatigue. For example, when the carbide milling cutter is in high speed milling, the teeth are constantly subjected to periodic impact and alternating thermal stress, and the comb cracks appear on the front face. Although some tools do not have obvious alternating load and alternating stress, because of the temperature of surface and inner layer is inconsistent, thermal stress will also be generated. In addition, there are inevitable defects in the inner part of tool materials, so the blade may also produce cracks. Sometimes the tool can continue to work for a while after the crack is formed, sometimes the rapid crack growth causes the blade to break or the blade surface is seriously flaking.

What Cause Risks of Unexpected Breakage on Maching Tool? 1

Tool wearing

according to the reasons for wear, it can be divided into:

1) Abrasive wear

There are some very hard particles in the processed materials, which can draw grooves on the surface of the tool, which is abrasive grinding damage. Abrasive wear exists on all sides, and the front surface is the most obvious. But for low speed cutting, the wear of hemp is not obvious because of the low cutting temperature, so abrasive wear is the main reason. The lower the hardness of the other tool, the more serious the abrasive hemp damage.

2) Cold welding wear

During cutting, there is a great pressure and strong friction between the workpiece, cutting and front and rear cutter surface, so cold welding will occur. Because of the relative movement between friction pairs, the cold welding will produce fracture and be taken away by one side, which will cause the cold welding wear. The wear of cold welding is usually serious at medium cutting speed. The results show that brittle metal has better cold welding resistance than plastic metal; The multiphase metal is smaller than that of one-way metal; The tendency of metal compound is smaller than that of single cold welding; The cold welding tendency of group B and iron in the periodic table of chemical elements is small. The cold welding of high speed steel and cemented carbide is serious when cutting at low speed.

3) Diffusion wear

In the process of cutting and contact between workpiece and tool at high temperature, the chemical elements of both sides spread in solid state, which changed the composition structure of the tool, made the surface of the tool vulnerable and intensified the wear of the tool. The diffusion phenomenon always keeps the object with high depth gradient continuously spreading to the object with low depth gradient. For example, cobalt in cemented carbide will rapidly spread to chip and workpiece at 800 ℃, and WC is decomposed into tungsten and carbon to steel; When the cutting temperature of PCD tool is higher than 800 ℃, the carbon atoms in PCD will transfer to the workpiece surface with a great diffusion strength, and the tool surface will be graphitized. The diffusion of cobalt and tungsten is serious, and the diffusion resistance of titanium, tantalum and niobium is strong. Therefore, YT cemented carbide has good wear resistance. When the temperature of ceramic and PCBN is as high as 1000 ℃ -1300 ℃, diffusion wear is not significant. Because of the same material, the workpiece, chip and tool will generate thermal potential in the contact area during cutting. This thermoelectric potential can promote diffusion and accelerate the wear of the tool. This kind of diffusion wear under the action of thermoelectric potential is called “thermoelectric wear”.

4) Oxidation wear

When the temperature increases, the surface oxidation of the tool produces soft oxide, which is caused by chip friction, which is called oxidation wear. For example, oxygen in the gas at 700 ℃ ~800 ℃ reacts with cobalt, carbide and titanium carbide in cemented carbide to form soft oxides; The chemical reaction of PCBN with water vapor at 1000 ℃

according to the wear form, it can be divided into:

Front face damage

When cutting plastic materials at a large speed, the front cutting surface near the cutting force will wear into crescent denture under the action of chip cutting, so it is also called crescent groove wear. In the early stage of wear, the front angle of the tool increases, which improves the cutting conditions and is conducive to the curl and fracture of the chip. However, when the crescent groove is further increased, the cutting edge strength is greatly weakened, which may eventually cause the breakage and damage of the cutting edge. When cutting brittle materials, or cutting plastic materials with lower cutting speed and thinner cutting thickness, crescent wear will not occur.

Wear of the blade tip

The wear of the tip is the wear on the back surface of the arc of the tip and the adjacent back side of the tool. It is the continuation of the wear on the back blade surface of the tool. Because of the poor heat dissipation conditions and stress concentration, the wear speed is faster than the back blade surface. Sometimes a series of grooves with spacing equal to the feed amount will be formed on the back of the pair cutter surface, which is called groove wear. They are mainly caused by the hardened layer and cutting pattern of the machined surface. When cutting hard cutting materials with a large hardening tendency, the groove wear is the most likely. The wear of the tool tip has the greatest influence on the surface roughness and machining accuracy of the workpiece.

Wear of rear cutter surface

When cutting plastic materials with large cutting thickness, the back face of the tool may not contact the workpiece due to the presence of chip lumps. In addition, the back face usually contacts the workpiece, and a wear belt with a rear angle of 0 is formed on the back surface. Generally, in the middle of the working length of the cutting edge, the wear of the back face is even, so the wear degree of the back face can be measured by VB of the width of the wear belt of the back cutting edge. Because the wear of various types of tools almost occurs in different cutting conditions, especially when cutting brittle materials or cutting plastic materials with a small cutting thickness, the wear of the tool is mainly the back surface wear, and the measurement of the width VB of the wear belt is relatively simple, so VB is usually used to represent the wear degree of the tool. The larger VB, not only increases the cutting force, causes the cutting vibration, but also affects the wear of the arc of the tool tip, thus affecting the machining accuracy and the surface quality.

What Cause Risks of Unexpected Breakage on Maching Tool? 2

methods for preventing the tool from being damaged

1) According to the characteristics of the processed materials and parts, the various types and brands of the tool materials are selected reasonably. Under the premise of certain hardness and wear resistance, the necessary toughness of the tool material must be ensured;

2) The geometric parameters of the tool are selected reasonably. By adjusting the front and rear angles, the main and secondary deflection angles, the blade inclination angle and other angles;

Ensure that the cutting edge and the cutting edge have good strength. Grinding out the negative chamfering on the cutting edge is an effective measure to prevent the tool from falling;

3) Ensure the quality of welding and grinding, and avoid defects caused by poor welding and edge grinding. The tool used in key process shall be grinded to improve the surface quality and check for cracks;

4) The cutting amount should be selected reasonably to avoid excessive cutting force and too high cutting temperature, so as to prevent the tool from being damaged;

5) The process system is as rigid as possible and vibration can be reduced;

6) Take correct operation method to avoid or reduce sudden load of tool.

What Cause Risks of Unexpected Breakage on Maching Tool? 3

The cause and Countermeasure of tool breakage

1) The blade brand and specification are not selected properly, such as the thickness of the blade is too thin or the brand is too hard and brittle when rough processing.

Countermeasures:

The brand with high bending strength and toughness is selected to increase the thickness of the blade or install the blade vertically.

2) The tool geometry parameters are not selected properly (such as too large front and rear angles).

Countermeasures:

The tool can be redesigned from the following aspects.

① Reduce the front and rear corners properly.

② The larger negative blade angle is adopted.

③ Decrease the main deflection angle.

④ Adopt larger negative chamfering or edge arc.

⑤ Repair and grind the transition cutting edge to enhance the cutting edge.

3) The welding process of blade is incorrect, which causes excessive welding stress or welding crack.

Countermeasures:

① Avoid the use of three-sided closed blade groove structure.

② Solder is selected correctly.

③ Avoid heating welding with oxyacetylene flame and keep it warm after welding to eliminate internal stress.

④ Use mechanical clamping structure as much as possible

4) The grinding stress and crack are caused by improper grinding method; The vibration of the teeth after grinding the PCBN milling cutter is too large, which makes the load of individual teeth too heavy, and also causes the tool beating.

Countermeasures:

① The grinding is performed by intermittent grinding or diamond grinding wheel.

② Soft grinding wheel is selected and the grinding wheel is kept sharp.

③ Pay attention to the quality of the grinding and strictly control the vibration and swing of the cutter teeth.

5) Unreasonable cutting quantity selection, such as too much, the machine tool is boring; When cutting intermittently, the cutting speed is too high, the feed is too large, and the blank allowance is not uniform, the cutting depth is too small; When cutting materials with high hardness tendency, such as high manganese steel, the feed rate is too small.

Countermeasures:

Re select the cutting amount.

6) The reasons of the uneven bottom surface of the cutting groove or the long extension of the blade are the reasons of the mechanical clamping tool.

Countermeasures:

① Trim the bottom of the knife groove.

② The position of cutting fluid nozzle should be arranged reasonably.

③ The hardened cutter rod adds cemented carbide gasket under the blade.

7) Excessive tool wear.

Countermeasures:

Change the cutting edge or change the cutting edge in time.

8) The cutting fluid flow is insufficient or the filling method is incorrect, which causes the blade to burst hot and crack.

Countermeasures:

① Increase the flow of cutting fluid.

② The position of cutting fluid nozzle should be arranged reasonably.

  1. Effective cooling methods such as spray cooling are used to improve the cooling effect.

④ The * cutting is used to reduce the impact on the blade.

9) The tool is not installed correctly, such as: the cutting tool is too high or too low; The end milling cutter adopts asymmetric milling.

Countermeasures:

Refit the tool.

10) The rigidity of the process system is too poor, which causes too much vibration of cutting.

Countermeasures:

① Increase the auxiliary support of the workpiece and improve the clamping rigidity of the workpiece.

② Reduce the overhang length of the tool.

③ Reduce the back angle of the tool properly.

④ Other vibration suppression measures shall be adopted.

11) Improper operation, such as: tool cut in from the middle of the workpiece, too strong action; Stop before you have returned the knife.

Countermeasures:

Pay attention to the operation method.

4、 Chip tumor

1) Causes of formation

In the part near the cutting edge, the contact area of the cutter chip is very high, so that the bottom metal of the chip is embedded in the micro uneven peak valley on the front cutter surface, forming a real metal contact without gap and thus the bonding phenomenon occurs. This part of the knife chip contact area is called the bonding area. In the bonding area, a thin layer of metal material will be deposited on the front cutting surface at the bottom of the chip. The metal materials of this part of the chip have undergone severe deformation and strengthened at the appropriate cutting temperature. With the continuous outflow of chips, the stagnant material will slip away from the upper layer of chip, which is the basis of chip tumor. Then, a second layer of stagnant cutting material will be formed on it, which will form debris deposits.

2) Characteristics and influence on cutting

① The hardness is 1.5-2.0 times higher than that of the workpiece material, which can replace the front tool surface for cutting. It can protect the cutting edge and reduce the front tool surface wear. However, debris flowing through the contact area of the tool workpiece will cause the back face wear of the tool.

② The working angle of the tool increases after the chip forming, which plays an active role in reducing the chip deformation and cutting force.

③ Because the chip lumps protrude outside the cutting edge, the actual cutting depth increases, which affects the dimension accuracy of the workpiece.

④ The chip deposit will cause “ploughing” phenomenon on the surface of the workpiece, which will affect the surface roughness of the workpiece. ⑤ The debris of the chip tumor will bond or embed into the surface of the workpiece, which will cause hard points, which will affect the quality of the machined surface.

From the above analysis, it can be seen that chip accumulating tumor is unfavorable to cutting and finishing.

3) Control measures

The following measures can be taken to avoid the chip tumor without binding or deformation strengthening between the bottom material and the front cutting surface.

① Reduce the roughness of the front cutter surface.

② Increase the front angle of the tool.

③ Reduce the cutting thickness.

④ Low speed cutting or high-speed cutting is adopted to avoid cutting speed which is easy to form chip forming.

⑤ The hardness and plasticity of the workpiece materials are improved by proper heat treatment.

⑥ The cutting fluid with good anti adhesion property (such as extremely pressure cutting fluid with sulfur and chlorine) is adopted.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 精品三级国产三级在线专区-精品一区二区三区视频观看-在线精品日韩亚洲欧一二三区-美女高潮无套内射视频免费| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 中文字幕久久精品一区二区三区-99国产麻豆精品人人爱-91麻豆精品福利视频-国产精品亚洲一区中文字幕| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 国产一区二区三区视频网站-日韩av影片免费在线观看-日韩av有码免费在线观看-制服丝袜天堂网在线观看| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 亚洲天堂av免费在线看-操老熟女中国老太自拍-夫妻性生生活免费视频-日韩av有码高清在线| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 午夜影视网站在线观看-欧美成年人性生活在线观看-好看的日韩电影一区二区三区-日本中文字幕在线在线| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 午夜视频在线观看色诱-久久精品午夜福利视频-熟妇人妻av一区二区三区-一区二区三区中文字幕在线观看| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 亚洲国产成人不卡高清麻豆-精品国产精品三级在线专区-亚洲欧美国产日韩一区-亚洲高清日本一区二区| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 久久精品国产普通话对白-丰满人妻中文字幕一区二区-国产日本精品视频在线观看-香港免费毛片在线观看|