色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

According to the Sandvik ‘s standard, a carbide?with a grain size ≥5μm is called ultra?coarse grain carbide. Ultra?coarse grain carbide?is one of the main technological advancements in the world’s carbide?industry. Compared with other carbides with a similar cobalt content but different grain sizes, ultra?coarse grain carbide?has higher fracture toughness, thermal conductivity, and thermal fatigue resistance, and is widely used in mining, rock drilling, rolling mills, and other applications, with broad market prospects.

What is Ultra Coarse Grain Carbide? 2

Preparation essentials of coarse?grain carbide

The sintering process is also a process of WC grain coarsening and is one of the key steps in obtaining ultra coarse grain carbide. The coarsening of carbide mainly depends on the dissolution of fine grain powder and the growth of coarse grain powder. The grain size and morphology of carbide are jointly determined by raw materials and production processes, with the original WC powder and carbon content being important influencing factors.

WC powder’s quality

Rhombic WC grains have sharp edges and corners, which can easily cause local stress concentration when subjected to loading. Therefore, using circular WC powder as raw material can effectively improve the toughness of carbide and reduce the sensitivity of carbide to cracks. When the cobalt content and carbon content are the same, the performance of carbide depends on the grain size of WC. In addition, after high ball milling, WC powder with smaller original particle size has a higher grain coarsening rate under the same sintering process. Therefore, the particle size distribution of the original powder plays an important role in predicting the coarsening of WC grains.

Carbon content in ultra coarse grain carbide

When the carbon content is low, the fine WC particles produced by ball milling will not undergo recrystallization during sintering. Under the same preparation conditions, compared with low?carbon cemented carbide, high?carbon cemented carbide can obtain a more uniform grain size distribution and a higher coarsening rate.

The kinetic curves of WC growth at different temperatures and different carbon contents are shown in Figure 1, and it can be clearly seen that low carbon content strongly inhibits the growth of WC. At the same time, the coarsening of WC in medium or high carbon content cemented carbide is highly dependent on temperature, while low carbon content cemented carbide is not sensitive to temperature. The apparent activation energy for WC coarsening in the cemented carbide with the lowest carbon content (5.79%) is 98 kcal/mol, which is close to the activation energy for C self?diffusion (88 kcal/mol), so the inhibition mechanism of this type of cemented carbide may be controlled by the self?diffusion process of C to WC and liquid phase Co in the WC grains. In addition, the hindering effect of the process of W and C precipitation in WC grains cannot be ruled out in W?rich and Co?poor cemented carbide.

What is Ultra Coarse Grain Carbide? 3

In carbides 2, 3, and 4, the WC coarse?graining process is strongly dependent on the carbon content, and the concentration of tungsten in the binder phase is relatively high. It can be inferred that in this case, the dissolution reaction of C in WC is the slowest. Therefore, the inhibitory effect of reducing carbon content on WC coarse?graining may be related to the decrease in carbon concentration in the liquid Co, and in turn, this process is limited by the dissolution rate of C on the surface of WC grains.

The stepped structure on the surface of WC and the irregular shape of WC grains support that nucleation of new atomic layers is the main coarse?graining mechanism. Therefore, defects play an important role in the process of grain coarsening by reducing the activation energy and promoting nucleation.

Additives

The thickness of the cobalt bonding layer in ultra?coarse grade WC?Co cemented carbide can reach several micrometers, which plays a significant role in inhibiting the initiation and propagation of thermal cracks and fatigue cracks. However, the hardness and wear resistance of the Co bonding metal are low. When the bonding phase wears quickly, the WC grains are exposed on the surface of the cemented carbide. The WC grains that are not fixed by the bonding phase are easily pulled out and damaged, leading to rapid wear of the entire cemented carbide.

It is worth noting that many attempts to strengthen the bonding agent by adding various chemical elements (Al, Si, Cr, B, etc.) to the bonding metal have failed. Although adding elements can increase the hardness of the cemented carbide, it also significantly reduces the fracture toughness and transverse fracture strength of the cemented carbide.

Trace amounts of VC and CrC can effectively suppress the growth of WC grains in ultrafine and nanocrystalline cemented carbides and enhance the hardness of the cemented carbide. Rare earth elements have the ability to inhibit the growth of WC grains discontinuously and unevenly. By using the characteristics of Cr, V, and RE to change the microstructure of the grains and improve the hardness of the cemented carbide, some scholars have applied them to the field of ultra?coarse cemented carbides. Using spherical WC with a Feinman grain size of 14 μm as raw material and adding a small amount of VC, WC?10% Co cemented carbide was produced, and the morphology comparison is shown in Figure 2. It can be seen that the grain size of the cemented carbide is significantly suppressed, and VC also helps to suppress changes in the shape of the WC grains, which still remain circular.

What is Ultra Coarse Grain Carbide? 4

The mechanical properties of ultra?coarse?grained cemented carbide

Cemented carbides with an average grain size of 5?10 μm are very suitable for use in mining and construction. Toughness increases as the WC grain size increases while maintaining the same hardness. Some scientists have further demonstrated the feasibility of improving the wear resistance and toughness of cemented carbides by increasing the WC grain size while maintaining the hardness of the cemented carbide. The relationship between the hardness and wear resistance of the cemented carbide is shown in Figure 4.

ULTRA COARSE GRAIN CARBIDE

Wniosek

The application of ultra coarse grain carbide is becoming more and more widespread, and the research and development of high quality ultra coarse grain carbide has become a hot topic in research around the world. While learning and drawing on advanced foreign technology, we should also pay attention to exploring the basic theory, establishing a sound theoretical system and standards.

1To explore the preparation process of high quality ultra coarse grain carbide. Strengthen the research on appropriate process parameters and the selection of binders and additives, and seek more simple and efficient methods for promotion and application.

2To explore the strengthening technology of the binder phase, enhance the interface bonding strength between the Co binder phase and the WC hard phase in ultra coarse grained cemented carbide. The wear resistance and service life of the cemented carbide will have a qualitative leap.

3To establish a corresponding relationship system between the grain size, cobalt content, and performance of ultra coarse grain carbide. Establish a sound product evaluation index system and corresponding industry standards, which will help to design and develop new carbide products more scientifically and efficiently, and achieve industrialization faster.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

美女脱内衣内裤露出咪咪-美女一区二区三区免费观看-国产网红女主播在线视频-久久亚洲春色中文字幕| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 国产欧美日韩激情免费-日韩av不卡免费观看-一本色道久久88综合亚洲精品-av天堂有色在线观看| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 日韩中文字幕乱码久久-日本一本无道码日韩精品-久久最黄性生活又爽又黄特级片-亚洲av香蕉精品一区二区三区| 岛国av大片在线观看-欧美高清一级二级三级-中文字幕中文字幕777-国产日韩亚洲精品视频| 九色蝌蚪国产极品自拍-国产夫妻自拍后入视频-国产一级黄色片在线观看-亚洲欧洲日产国产av| 欧美精品一区二区三区三州-少妇被五个黑人玩的在线视频-国产亚洲精品a久久7777-亚洲av色香蕉一区二区精品国产| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 人妻中文字幕在线观看-日本精品一级影片欧美精品-91偷自国产一区二区三区-女人高潮被爽到呻吟在线| 日本一区二区三区乱在线视频-国产精品一区二区精品视频-日本人妻系列在线免费看-国产成人高清三级视频| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 国内精品一区二区三区香蕉-熟女少妇熟女高潮一区二区-亚洲乱码国产乱码精品精男男-国内人妻自拍偷拍视频一区| 男女激情四射午夜福利视频网站-人成午夜免费毛片直接观看-日本女优在线观看一区二区-青草国内精品视频在线观看| 久久成人三级一区二区三区-自拍视频在线观看成人-成人日韩在线中文字幕有码-国产黄色盗摄在线观看| 亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 国产一级亚洲一级一区-国产精品一亚洲av日韩av-日韩高清有码中文字幕-久久国产精品免费一区二区三区| 四只虎视频大全免费观看-日本黄色激情免费网站-免费岛国大片在线播放-国产午夜福利在现观看| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 久久网站黄色一级视频-精品极品三级久久久久电-国产精品天堂蜜av在线播放-国产传媒免费在线观看| 狠狠做深爱婷婷丁香综合-成人日韩亚洲在线观看-蜜桃传媒mv在线免费-国产日韩入口一区二区| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频|