色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The oxidation with temperature in the cutting area can reach 1000°C significantly reduces the hardness and strength of the w?glik, greatly shortening the tool’s lifespan and severely affecting the performance of carbide tools. The author of this paper investigates the high-temperature oxidation resistance and high-temperature performance of different carbide compositions, focusing on adjusting the cobalt content, WC grain size, and TaC/NbC/TiC additives. The following conclusions were drawn from this study.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 2

The Effect of Cobalt Content

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 3

Figure 3 shows the microstructure after oxidation of carbides?with different cobalt contents (all WC materials are WC-1). As the cobalt content increases, the microstructure of the carbide?oxides changes significantly. The oxide of the WC-6%Co carbide?has more and larger pores, the pores in the oxide of the WC-10%Co carbide?are significantly reduced, and the oxide of the WC-14%Co carbide?has virtually no large pores.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 4

Figure 4 shows the oxidation weight gain curves of carbides?with different cobalt contents. As the cobalt content increases, the oxidation weight gain of the carbides decreases sequentially. At 900°C, the oxidation weight gain of WC-6%Co, WC-10%Co, and WC-14%Co carbides are 11.92%, 11.46%, and 11.26%, respectively. Compared to WC-6%Co carbide, the oxidation weight gain of WC-10%Co and WC-14%Co carbides?at 900°C decreased by 3.8% and 5.5%, respectively. Therefore, although increasing the Co content can improve the high-temperature oxidation resistance of carbides, the improvement is not significant.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 5

Table 3 lists the oxidation reaction equations of each component in the carbide?and their Gibbs free energy. It is well known that during the oxidation of carbides, the oxidation of WC to WO3 results in significant volume expansion. The oxide WO3 is loose, porous, and volatile, producing volatile gases such as CO2, which provide more pathways for the oxidation diffusion process, thereby exacerbating the oxidation of the carbide. Although the binder phase is more prone to oxidation than the hard phase, the oxide formed from the binder phase is the relatively dense CoWO4, which can slow down the oxidation diffusion process of the carbide. Therefore, with the increase in cobalt content, more CoWO4 and less WO3 are formed, resulting in a denser microstructure of the oxides and consequently improving the high-temperature oxidation resistance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 6

Table 4 shows the room temperature hardness and high-temperature hardness of carbides?with different cobalt contents. At room temperature, the more cobalt content, the lower the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, with the rate of decrease reducing as the cobalt content increases. At 800°C, the hardness of carbides with higher cobalt content is actually higher than that of carbides with lower cobalt content.

 

Both the hard phase and the binder phase exhibit some thermal expansion at high temperatures, with the binder phase experiencing greater thermal expansion and generating larger stress, which offsets some of the load force. This is one of the reasons why the high-temperature hardness of the carbide?increases with the increase in cobalt content.

The Effect of WC Grain Size

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 7

Figure 6 shows the oxidation weight gain curves of 4#, 5#, and 6# carbides?prepared with WC of different Fischer particle sizes. From room temperature to 825°C, the oxidation weight gain curves of the three carbides with different WC grain sizes overlap; however, in the range of 825-900°C, the finer the WC grains, the less the oxidation weight gain of the carbides. At 900°C, the oxidation weight gains of 4#, 5#, and 6# carbides?are 9.18%, 8.67%, and 8.20%, respectively. Compared to the 4# carbide, the oxidation weight gain of the 5# and 6# carbides?at 900°C decreased by 5.6% and 10.7%, respectively. Therefore, under the same Co content, refining the WC grains can improve the high-temperature oxidation resistance of carbides.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 8

Figure 7 shows the XRD diffraction patterns after oxidation of carbides?with different WC grain sizes. Since the compositions of 4#, 5#, and 6# carbides?are the same, there is no significant difference in their oxidation products. Therefore, the diffraction patterns of the oxides of the three carbides?with different WC grain sizes are essentially identical.

 

The Oxidation Resistance and hardness Differences of Carbides with Different WC Grain Sizes

The differences in the oxidation resistance of carbides?with different WC grain sizes can be mainly attributed to the following two points:

In the case of a uniform carbide?structure, finer WC grains result in more phase boundaries between WC and the binder phase. The finer WC grains are better encapsulated by the binder phase, and the oxidation products of the binder phase can, to some extent, hinder the oxidation diffusion process, thereby improving the high-temperature oxidation resistance of the carbide.

Finer WC grains have fewer grain boundary defects and smaller grain boundary voids between the WC grains, which correspondingly reduce the oxidation diffusion channels, thus enhancing the high-temperature oxidation performance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 9

Table 5 shows the room temperature hardness and high-temperature hardness of carbides?with different WC grain sizes. At room temperature, the finer the WC grains, the higher the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, and the rate of decrease in high-temperature hardness increases as the WC grain size decreases. Clearly, although the room temperature hardness of the carbide?increases as the WC grain size decreases, the high-temperature hardness becomes lower.

 

The Effect of TaC/NbC/TiC Additives

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 10

Figure 8 shows the oxidation weight gain curves of carbides?with different carbide additives (all WC materials are WC-3). The oxidation weight gain curves and oxide diffraction patterns of WC-Co and WC-Co-TaC carbides?are basically the same, with oxidation weight gains of 10.58% and 10.20% at 900°C, respectively. Among the four carbides, WC-Co-NbC carbide?has the highest oxidation weight gain, while WC-Co-TiC carbide?has the lowest oxidation weight gain, with oxidation weight gains of 11.68% and 9.05% at 900°C, respectively.

twardo??

Figure 9 shows the XRD diffraction patterns of carbides?with different carbide additives after oxidation. The oxidation of the carbides produces corresponding oxides.

In WC-Co carbides, the added TaC, NbC, and TiC all exist in the form of W-containing solid solutions. The (Nb,W)C solid solution oxidizes earlier than WC and has many phase boundaries with WC. Without the protective “encapsulation” of the binder phase, the oxidation of the solid solution promotes the oxidation of WC, thereby accelerating the oxidation of the carbide. The oxidation weight gain of WC-Co-TaC carbide?is the same as that of WC-Co carbide. This is because the (Ta,W)C solid solution reacts simultaneously with WC, and since the hard phase WC is the main component, the loose and porous WO3 phase predominantly controls the oxidation rate of the carbide. Therefore, the addition of TaC does not significantly affect the high-temperature oxidation resistance of the carbide.

In summary, under the same conditions of grain size and cobalt content, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide. However, the addition of NbC significantly reduces the high-temperature oxidation resistance of the carbide, with a reduction of 10.4%, while the addition of TiC significantly improves the high-temperature oxidation resistance of the carbide, with an improvement of 14.5%.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 11

Table 6 shows the room temperature hardness and high-temperature hardness of carbides?with different carbide additives. At room temperature, the hardness of the carbides with TaC, NbC, and TiC additives is comparable to that of the WC-Co carbide. When the temperature rises to 800°C, the high-temperature hardness of the carbides with TaC, NbC, and TiC additives is higher than that of the WC-Co carbide, and the rate of decrease in high-temperature hardness is significantly reduced.

It is well known that solid solutions exhibit good red hardness and provide structural support to the overall carbide, helping it maintain high hardness under high-temperature conditions. Additionally, the solid solutions contribute to solid solution strengthening of the Co phase, which increases the hardness of the Co phase. Therefore, the addition of TaC, NbC, and TiC results in carbides?exhibiting good high-temperature hardness.

Wniosek

This study investigated the effects of cobalt content, WC grain size, and types of solid solutions on the high-temperature oxidation resistance and high-temperature hardness of carbides. The conclusions are as follows:

1.Increasing the cobalt content improves the high-temperature oxidation resistance of the carbide?and significantly increases the high-temperature hardness.

2.Reducing the WC grain size enhances the high-temperature oxidation resistance of the carbide?but significantly reduces the high-temperature hardness.

3.Compared to WC-Co carbides, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide, the addition of NbC decreases the high-temperature oxidation resistance, and the addition of TiC significantly improves the high-temperature oxidation resistance. All three additives, TaC, NbC, and TiC, significantly enhance the high-temperature hardness of the carbide.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 蜜臀av午夜在线观看-亚洲欧美日韩成人综合在线-国产黄色一级性生活片-亚洲av高清一区二区三区麻豆| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 美性中文网美性综合网-亚洲最大黄色网在线观看-自偷精品视频三级自拍-97精品伊人久久大香| 久久成人三级一区二区三区-自拍视频在线观看成人-成人日韩在线中文字幕有码-国产黄色盗摄在线观看| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 精品国产日韩一区三区-成人激情毛片免费在线看-国产一区二区高清日韩-日韩成人黄片免费在线观看| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 加勒比中文字幕久久av-久久黄色美女三级久一点黄-国产精品无套高潮久久-久久婷婷综合色拍亚洲| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 国产女主播在线播放福利-日韩中文字幕综合第二页-av男人的天堂免费观看-国产乱码免费一区二区三区不卡| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 在线视频自拍第九十七页-亚洲岛国精品视频在线观看-亚洲av日韩一区在线观看-日韩精品中文一区二区三区| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看|