色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

A form milling cutter is a specialized cutting tool used for machining complex contoured components such as various gears, crankshafts, camshafts, etc. It can replicate the external shape of the part and create the same profile through machining. Unlike traditional diamond or square insert tools, a form turning tool employs form inserts. Some form turning tools can be fed directly into the workpiece, similar to a drill bit, to cut into the material. For example, an end mill-type form milling cutter can cut in this manner, provided there is sufficient clearance left by the tool manufacturer at the tool’s end. Also, modular form milling cutters can be fed directly into the workpiece, but they consume a significant amount of power during the machining process.

While form turning tools cannot replace drills due to the larger engagement area involved in drilling, which exceeds the cutting depth capabilities of such tools, the capability of form milling cutters to directly cut into the workpiece solves a troublesome issue in machining: the need to pre-drill a starting hole before rough machining.

Because conventional turning tools cannot directly cut into the material along the Z-axis, a starting hole needs to be pre-drilled. Another approach is using an inclined entry, often requiring the application of CAM software. However, with the use of form turning tools, this step can be eliminated.

How to Select?a?Good Form Milling Cutters? 1

Characteristics of Form Milling Cutters

Form milling involves the use of cutting tools equipped with indexable inserts that have circular cutting edges. These milling cutters come with either full circular cutting edges (used for circular face milling cutters or ball nose milling cutters) or partial circular cutting edges. Form milling cutters are categorized into modular milling cutters, milling cutters with helical shanks, and modular (helical) milling cutters. Form milling cutters utilize form turning tools, which enable them to have several advantages, including small back engagement, high feed rates, serving as a complement to the trend of high-speed machining. Form milling cutters have the following characteristics:

Strong Feed Capability

Some form milling cutters can directly feed into the workpiece, similar to a drill, to cut into it.

Helical Interpolation

By combining form milling cutters with helical interpolation, it becomes easy and fast to machine large diameter holes.

Higher Cutting Edge Strength

Due to the absence of sharp corners, form turning tools can tolerate larger tool offsets and vibrations. This allows for increased spindle speeds and feed rates during machining while reducing the risk of tool breakage.

Number of Cutting Edges

Form turning tools have more available cutting edges. Depending on the size of the insert and the back engagement, form turning tools can have 4-8 effective indexable positions, resulting in at least twice the material removal rate compared to conventional diamond and square inserts. This advantage reduces the need for tool changes, leading to higher efficiency and cost-effectiveness.

Efficient Cutting

Using form turning tools allows for high technological cutting rates without requiring extremely high machine power. Because of their strength, form turning tools can accommodate larger feed rates for machining compared to square-end milling tools, and even handle heavy roughing on lightweight machines.

Higher Surface Finish After Roughing

Surfaces milled with form turning tools exhibit fewer noticeable irregularities compared to surfaces roughed with square-end tools. The residual height of the surface irregularities is lower. Workpieces that undergo roughing with form turning tools have a higher surface finish, allowing them to proceed directly to semi-finish machining.

 

Applications of Form Milling Cutters

Choice of Machining Stages: Roughing is typically carried out using form milling cutters (shown in the upper image), while finishing involves the use of solid carbide ball nose end mills (shown in the lower image).

How to Select?a?Good Form Milling Cutters? 2How to Select?a?Good Form Milling Cutters? 3

Using form milling cutters for roughing provides a better “preparation” for semi-finishing or finishing operations. When roughing is performed with square-end milling tools, there is a step left when cutting downwards. The larger the cutting depth per pass, the more pronounced this step effect becomes. Such uneven surfaces on the workpiece can result in uneven tool forces during semi-finishing, causing tool impact and deformation. This makes a direct transition from roughing to finishing impractical. Not only is semi-finishing necessary, but multiple finishing passes are also required.

The use of form milling cutters greatly reduces the occurrence of the aforementioned issues. Instead of leaving a step like square-end tools, there are only small “wrinkles” with very low height that can be easily machined away. Form milling cutters are an optimal choice, especially for small cutting depths, where the height of these “wrinkles” is minimized. The surface of the workpiece after roughing is relatively smooth, allowing for easy semi-finishing. In some cases, it might even be possible to proceed directly to finishing.

How to Select?a?Good Form Milling Cutters? 4

Selection of Form Milling Cutters

1Choosing the Insert Geometry

When machining a complex part, the fundamental requirement is that the cutting edge can access the regions corresponding to the part’s contours. This necessitates selecting the appropriate insert shape, main rake angle, secondary rake angle, front angle, and back angle. When choosing the insert shape, it’s essential to consider the insert’s strength. Circular inserts generally have the highest strength. For non-circular inserts, a larger nose angle increases their strength. Due to clearance angle considerations, form milling typically employs 35° or 55° diamond inserts. The choice of insert holder depends on the required cutting path. For intricate form milling, a J-type holder with diamond inserts can be chosen to achieve a larger back angle.

2Insert Back Angle

The main and secondary rake angles of the insert determine the back angle between the insert’s back surface and the workpiece. Different materials require different back angles. For instance, when machining tough materials, especially nickel-based alloys, there is significant springback. These alloys tend to deform ahead of the cutting edge and spring back after cutting. This springback causes the workpiece to scrape against the insert’s back surface, generating substantial cutting heat. Additionally, the work hardening of nickel-based materials produces cutting heat, leading to tool thermal failure. The failure mode might be tool chipping, but thermal expansion of the cutting edge results in tool fracture.

Titanium materials can spring back by 0.05mm to 0.08mm, which necessitates a back angle of 14° or 15° between the insert’s back surface and the workpiece to prevent thermal failure when machining such materials. However, titanium and plastics have similar springback characteristics. Using an insufficient back angle when machining titanium can lead to tool thermal failure. Such a tool, when used for plastics, would generate cutting forces and heat due to springback, melting the plastic workpiece. The insert’s back angle shouldn’t be too large, as excessive back angle reduces insert strength. Inserts without a back angle have sufficient strength but must be mounted on a holder with a negative rake angle to create an adequate back angle. Using an insert with a positive rake angle and no back angle groove ensures the required insert strength while maintaining a positive rake angle cutting.

3Cutting Force and Chip Control

Changes in the relationship between the workpiece, tool, and other factors within the machining system will affect effective chip control. For instance, in form milling, as the insert moves outward from the workpiece center, chip thickness decreases, cutting depth increases, and chip control worsens. One solution is to split a single pass into two, changing the outward feed to an inward feed to achieve the final contour.

Thin-walled and elongated parts are difficult to clamp, and cutting forces can cause workpiece deformation, poor surface finish, or even part scrapping. A specialized insert designed to control chips can minimize such deformation. If the machinability of the workpiece material complicates turning operations, parts made of two different materials can double this complexity. Therefore, when machining parts composed of multiple materials, one approach is to select insert grades capable of machining different materials. For example, when machining a part with an inner 4340 steel and an outer nickel-based alloy, the programmer must insert a pause to change the insert. To address this, using two different insert grades is recommended. When tool life remains low for both insert grades, Sumitomo Electric Industries’ AC2000 CVD-coated inserts from Japan can be used. By adjusting the feed rate and cutting speed, both materials can be machined without changing inserts, significantly increasing tool life.

wrzesień 14, 2023

Good gears …. thanks for de nice advices.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 尤物视频在线免费观看-粗大挺进孕妇人妻在线-国产精品自偷自拍对白-久久性生活免费看视频| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 97中文字幕一区二区三区-国产精品亚洲av无人-亚洲国产精品自产拍久久-成人深夜福利在线视频| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 青青成年人性生活视频-日韩精品成人亚洲天堂-久久永久免费人妻精品我不卡-成人国产精品三上悠亚久久| 午夜狂情三级伦理涩之屋-亚洲国产精品美女嫩模综合在-久热在线观看免费视频-国产精品伦子一区二区三区| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 九九在线国产精品自拍-亚洲综合精品中文字幕-亚州国产成人综合精品-人妻少妇久久精品中文| 成人精品一区二区三区久久-中文字幕乱码亚洲无线三区-亚洲精品亚洲人成人网-中文字幕五月久久婷热| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 人妻少妇一区二区三区精品-三级尤物视频在线观看-野花在线中文字幕伊人-亚洲精品一区二区播放| 亚洲美脚一区二区三区-亚洲一区二区三区在线激情-国产精品日韩精品在线-丰满少妇高潮在线观看| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 国产成人自拍视频精品-丝袜美腿亚洲一区二区刘亦菲-91精选国产在线视频-欧洲美熟女乱又伦免费| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 亚洲三级电影久久网络-中文字幕第一页亚洲天堂-九九热视频这里只有精-国产免费av国片精品| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 日本人妻中文字幕久久-色老汉免费在线观看一区-成人国产在线观看网站-欧美日韩国产亚洲一区二区三区| 女优av天堂中文字幕-国产亚洲精品成人av久-国产黄三级三级三级三级一区二区-日本高清视频不卡一区二区| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 国产在线观看av自拍-成人自拍小视频在线看-十八禁网站在线免费观看-丰满的熟妇露脸大屁股| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品|