色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

High-speed milling technology has had a significant impact on mould processing procedures, transforming traditional processes such as “annealing → milling → heat treatment → grinding” or “electrical discharge milling → manual grinding and polishing” into streamlined processes where high-speed cutting can replace all previous steps. High-speed milling technology is not only suitable for the direct milling of hardened mould cavities (particularly for semi-finishing and finishing) but has also found widespread application in EDM electrode processing, rapid prototyping, and other areas. Extensive production practices have shown that using high-speed cutting technology can save about 80% of manual grinding time in subsequent mould processing, reduce processing costs by nearly 30%, achieve surface processing precision of 1 micrometer, and double the tool cutting efficiency.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 1

High-Speed Cutting Milling Equipment

1.High Stability of Machine Bed Components

The bed and support components of a high-speed cutting machine must exhibit excellent dynamic and static stiffness, thermal rigidity, and optimal damping characteristics. Most machines use high-quality, high-rigidity gray cast iron for these components, with some manufacturers incorporating high-damping polymer concrete into the base to enhance vibration resistance and thermal stability. This not only ensures stable machine accuracy but also prevents tool chatter during cutting. Measures such as closed bed designs, integral casting of the machine bed, symmetric bed structures, and dense ribbing are also crucial for enhancing machine stability.

 

2.Machine Spindle

The spindle performance of high-speed machines is crucial for achieving high-speed cutting. High-speed cutting spindles typically operate at speeds ranging from 10,000 to 100,000 RPM, with spindle power greater than 15 kW. Spindle axial gaps between the tool holder and spindle are controlled to be no more than 0.005 mm using compressed air or cooling systems. Spindles are required to have rapid acceleration and deceleration capabilities, meaning they must have high angular acceleration and deceleration rates.

High-speed spindles often use liquid static pressure bearings, air static pressure bearings, hot-pressed silicon nitride (Si3N4) ceramic bearings, or magnetic suspension bearings. Lubrication is commonly achieved with oil-air lubrication or spray lubrication, and spindle cooling typically involves internal water or air cooling.

 

3.Machine Drive System

To meet the demands of high-speed mould processing, the drive system of a high-speed milling machine should have the following characteristics:

High Feed Speed: Research indicates that increasing spindle speed and feed per tooth is beneficial for reducing tool wear, especially for small-diameter tools. Common feed speed ranges are 20-30 m/min, with large lead ball screws allowing speeds up to 60 m/min and linear motors achieving up to 120 m/min.

High Acceleration: High-speed milling of complex 3D surfaces requires a drive system with good acceleration characteristics, with drivers providing high-speed feed (fast feed rate of about 40 m/min and 3D profile processing speed of 10 m/min) and accelerations and decelerations ranging from 0.4 m/s2 to 10 m/s2.

Most machine manufacturers use closed-loop position servo control with small lead, large-size, high-quality ball screws or large lead multi-head screws. Advances in motor technology have led to the development and successful application of linear motors in CNC machines. Linear motor drives eliminate issues such as mass inertia, overshooting, lag, and vibrations, speeding up servo response, improving servo control accuracy, and enhancing machine processing precision.

 

4.CNC System

Advanced CNC systems are key to ensuring the quality and efficiency of high-speed processing of complex mould surfaces. Basic requirements for CNC systems in high-speed cutting include:

High-Speed Digital Control Loop: Includes 32-bit or 64-bit parallel processors and hard drives with over 1.5 GB; extremely short linear motor sampling times.

Speed and Acceleration Feedforward Control: Digital drive systems with jerk control.

Advanced Interpolation Methods: Such as NURBS-based spline interpolation for good surface quality, precise dimensions, and high geometric accuracy.

Look-Ahead Function: Requires a large capacity buffer register to pre-read and check multiple program segments (e.g., up to 500 segments for DMG machines, and 1000-2000 segments for Siemens systems) to adjust feed speeds and avoid over-cutting when surface shapes (curvatures) change.

Error Compensation Functions: Includes compensation for thermal errors due to linear motors and spindles, quadrant errors, measurement system errors, etc. Additionally, high data transmission speeds are required.

Data Interfaces: Traditional data interfaces like RS232 serial ports transmit at 19.2 kb, while many advanced milling centers now use Ethernet for data transmission at speeds up to 200 kb.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 2

5.Cooling and Lubrication

High-speed milling uses coated carbide tools and operates without cutting fluids, resulting in higher cutting efficiency. This is because the high centrifugal forces of the rotating spindle make it difficult for cutting fluids to reach the cutting zone, and even if they do, the high temperatures may cause the fluids to evaporate, reducing cooling effectiveness. Additionally, cutting fluids can cause rapid temperature changes at the tool edge, leading to cracking. Thus, dry cutting with oil/air cooling is employed. This method quickly blows away the cutting heat with high-pressure air, and atomized lubrication oil forms a thin protective film on the tool edge and workpiece surface, effectively extending tool life and improving surface quality.

milling cutters

Tools for High-Speed Cutting

Tools are one of the most critical factors in high-speed cutting, directly impacting processing efficiency, manufacturing costs, and product precision. High-speed cutting tools must withstand high temperatures, pressures, friction, impact, and vibrations. They should have good mechanical properties and thermal stability, including impact resistance, wear resistance, and thermal fatigue resistance. The development of high-speed cutting tools has been rapid, with common materials including diamond (PCD), cubic boron nitride (CBN), ceramic tools, coated carbide, and titanium carbide (TiC) and titanium nitride (TiN) hardmetals.

For cutting cast iron and alloy steel, carbide is the most commonly used tool material due to its good wear resistance, although its hardness is lower than CBN and ceramics.

To improve hardness and surface finish, coating technologies such as titanium nitride (TiN) and aluminum titanium nitride (TiAlN) are employed. Coating technology has evolved from single-layer to multi-layer and multi-material coatings, becoming a key technology for enhancing high-speed cutting capabilities. Carbide inserts with titanium carbonitride coatings in the diameter range of 10-40 mm can process materials with Rockwell hardness below 42, while titanium aluminum nitride-coated tools can handle materials with Rockwell hardness of 42 or higher.

For high-speed cutting of steel, tools made from heat-resistant and fatigue-resistant P-class carbide, coated carbide, CBN, and CBN composite materials (WBN) are preferred. For cutting cast iron, fine-grain K-class carbide should be used for roughing, and composite silicon nitride ceramics or polycrystalline CBN (PCBN) tools for finishing.

For precision milling of non-ferrous metals or non-metallic materials, polycrystalline diamond (PCD) or CVD diamond-coated tools are recommended. When selecting cutting parameters, attention should be given to the effective diameter for round blades and ball end mills. High-speed milling tools should be designed with dynamic balancing, and the cutting edge angles should be adjusted compared to conventional tools.

High-Speed Milling Processes and Strategies

High-speed machining includes roughing, semi-finishing, finishing, and mirror finishing to remove excess material and achieve high-quality surface finishes and fine structures.

 

Zgrubna

The primary goal of mould roughing is to maximize material removal rate per unit time and prepare the geometric profile of the workpiece for semi-finishing. The process plan for high-speed roughing involves a combination of high cutting speeds, high feed rates, and small cutting depths. The most commonly used CAM software employs methods like spiral contouring and Z-axis contouring, which generate continuous, smooth tool paths in a single pass without retracting the tool, using arc entry and exit methods. Spiral contouring avoids frequent tool retraction and approach, minimizing the impact on surface quality and machine wear. Steep and flat areas are processed separately, with optimized tool paths generated using spiral methods with minimal retraction to achieve better surface quality. In high-speed milling, it is essential to use arc entry and exit methods and maintain a consistent tool path to minimize machine wear and achieve higher material removal rates.

 

Semi-Finishing

The semi-finishing process focuses on improving surface quality and dimensional accuracy, bridging the gap between roughing and finishing. The cutting speeds are higher than those used in traditional milling but lower than those in finishing. The primary goal is to achieve a better surface finish and precision by using a reduced depth of cut and controlling feed rates. Advanced CAM systems generate tool paths using techniques like trochoidal milling and adaptive clearing, which adaptively change cutting parameters based on the workpiece geometry and tool path. This method enhances tool life and surface quality while reducing cutting forces and thermal stresses.

 

Wykończeniowy

Finishing operations aim to achieve the final surface quality and dimensional accuracy. High-speed finishing involves higher cutting speeds and lower depths of cut, using techniques such as high-speed finishing cuts with constant engagement to ensure a smooth and uniform surface. Tool paths are optimized using advanced CAM software to achieve the desired surface finish and accuracy. Techniques like high-speed trochoidal milling and constant chip load milling are used to achieve excellent surface finishes and tight tolerances.

 

Mirror Finishing

Mirror finishing is the final step to achieve an exceptionally smooth and reflective surface. High-speed mirror finishing processes often involve special tools and techniques, including abrasive tools and polishing compounds. The key is to minimize surface irregularities and achieve a mirror-like finish with high precision. Techniques such as high-speed burnishing, polishing, and super-finishing are employed to achieve the desired surface quality.

 

Wniosek

High-speed milling technology has revolutionized the mould manufacturing industry by significantly enhancing machining efficiency, precision, and surface quality. The integration of advanced machining equipment, CNC systems, tooling technologies, and innovative milling strategies has enabled the production of complex mould cavities with high accuracy and reduced processing times. As technology continues to advance, high-speed milling will play an increasingly crucial role in meeting the evolving demands of the mould manufacturing industry.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 在线视频自拍第九十七页-亚洲岛国精品视频在线观看-亚洲av日韩一区在线观看-日韩精品中文一区二区三区| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 视频一区二区不中文字幕-亚洲av色香蕉一区二区三区妖精-国产91精品在线观看懂色-国产一区二区三区不卡在线看| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 午夜性福福利视频一区二区三区-午夜福利在线看片在线-欧洲内射免费人文艺术-亚洲天堂成人av在线| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 日本很污动漫在线观看-亚洲精品乱码国产精品乱码-日本亚洲一区二区三区四区-少妇高潮太爽了免费观看| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 亚洲毛片在线观看视频网站-午夜高清福利在线观看-性生活视频在线免费观看-女人吞精口爆在线视频| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 射女人进去视频在线观看-91麻豆国产在线视频-久久国产精品99精品国产不卡-中文字幕欧美日韩国产| 蜜桃视频大全免费观看-国产高清不卡一区二区-亚洲av综合av东京热三区-无套内射激情国产av| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 日韩av中文字幕剧情在线-亚洲综合一区二区三区在线-91麻豆精品国产大片免费-日韩欧美亚洲制服丝袜| 国产大波精品一区二区在线-男女床上激情免费网站-日韩成人在线高清视频-国产精品视频免费自拍| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区|