色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To discuss the problem of fatigue and fracture of cemented carbides, we must first understand these two concepts, namely what is fatigue and what is fatigue fracture.

Fatigue: The change in the properties of metal materials under repeated stress or strain is called fatigue.

Fatigue fracture: When a material is subjected to alternating cyclic stress or strain, it causes continuous development of local structural changes and internal defects, resulting in a decrease in mechanical properties of the material, ultimately leading to complete fracture of the product or material. This process is called fatigue fracture, and can also be referred to as metal fatigue. The stress causing fatigue fracture is generally very low, and the occurrence of fatigue fracture often has characteristics of suddenness, high localization, and sensitivity to various defects.

fatigue  carbide

Classification of fatigue fracture

High-cycle fatigue and low-cycle fatigue

If the stress level acting on the part or component is low, and the number of cycles of failure is greater than 100,000, it is called high-cycle fatigue. Products such as springs, drive shafts, and fasteners are generally characterized by high-cycle fatigue.

The stress level acting on the component parts is high, and the number of cycles of damage is low, generally less than 10,000 cycles of fatigue, which is called low-cycle fatigue. For example, the fatigue damage of pressure vessels and turbine parts belongs to low-cycle fatigue.

Stress and strain analysis

Strain fatigue – high stress, low cycle number, called low cycle fatigue;

Stress fatigue – low stress, high cycle number, known as high-cycle fatigue.

Composite fatigue, but in practice, it is often difficult to distinguish between stress and strain types, and in general, both types are present, which is called composite fatigue.

Classification by load type

Bending fatigue, torsional fatigue, tension-compression fatigue, contact fatigue, vibration fatigue, and fretting fatigue.

How does the fatigue fracture of cemented carbide material occur? 2

Characteristics of fatigue fracture

Macro: crack source → propagation zone → instantaneous fracture zone.

Crack source: The presence of grooves, defects, or areas of stress concentration on the surface is a prerequisite for the generation of crack sources.

Fatigue propagation zone: The section is relatively flat, with fatigue propagation perpendicular to the stress direction, resulting in a clear fatigue arc, also known as a beach or shell line.

Transient fracture zone: It is the area where fatigue cracks rapidly expand to instantaneous fracture. The fracture surface has traces of metal slip, and some products have radioactive stripes and shear lip zones in the transient fracture zone.

Microscopic: The typical characteristic of fatigue fracture is the appearance of fatigue striations.

Some microscopic samples also exhibit cleavage and quasi-cleavage phenomena (crystallographic terms for small planes that appear in microscopic images), as well as microstructural features such as toughness pockets.

 

Characteristics of fatigue fracture

(1) There is no obvious macroscopic plastic deformation during fracture, and there is no obvious precursor before fracture. It often occurs suddenly, causing damage or fracture of mechanical parts, which is very harmful.

(2) The stress causing fatigue fracture is very low, often lower than the stress load at the yield strength under static load.

(3) After fatigue failure, the three regions of crack initiation, propagation, and final fracture can usually be clearly observed at the fracture surface.

 

The cause of fatigue fracture of carbide tools

The service conditions of cemented carbide tools are generally harsh, often requiring cyclic loading, alternating temperature changes between hot and cold, and corrosive environments. Fatigue is a major cause of damage to cemented carbide workpieces.

Generally speaking, fatigue types include mechanical fatigue, thermal fatigue, corrosion fatigue, etc. In practical applications, several types of fatigue act together and promote each other. Currently, most of the reports on the properties of cemented carbides are related to static load, mainly including hardness, bending strength, fracture toughness, etc.

Fatigue fracture of carbide cutting tool

Cemented carbide tools are constantly subjected to alternating bending stresses, frequent shocks, and thermal fatigue caused by rapid cooling during idle periods during use, which inevitably leads to stick-slip and chipping. These are the various cracks that occur in the cutting area due to fatigue, which gradually expand under cyclic loading until failure.

How does the fatigue fracture of cemented carbide material occur? 3

Fatigue fracture of carbide mining tools

In mining and excavation, it is necessary to achieve this through the rotation, impact, and combination of the two effects of carbide tools. During frequent contact with rock, carbide tools produce impact fatigue, and at the same time generate a large amount of heat due to severe friction, with local temperatures reaching over 1000°C. Meanwhile, under the action of water cooling or air cooling, thermal fatigue effects occur. For mining conditions in medium and soft hardness rocks, due to the small impact load on the rock, the main cause of damage is the expansion of crack sources caused by thermal fatigue under the combined action of impact load and thermal cycle, which ultimately leads to instability and final fracture of the workpiece. The final damage characteristics of this tool are the presence of “snake skin” cracks caused by thermal fatigue. During hard rock mining, the drill teeth mainly bear a large impact load, so the main damage is caused by impact fatigue. Physical or chemical changes in the surface area induce crack nucleation, which then grows and destroys. The increase in temperature accelerates this physical or chemical change, thereby exacerbating the material damage.

How does the fatigue fracture of cemented carbide material occur? 4

As a coal mining tool, carbide pick is subjected to high reciprocal compressive stress, shear stress, and impact load, and is also affected by temperature changes, making its service conditions quite complex.The main causes of fracture in coal mining pick blades are the combined effects of surface cracking caused by brazing, thermal fatigue, and impact fatigue.

Fatigue fracture of carbide die

Cemented carbide molds have been subjected to dynamic loads such as drawing, extrusion, and impact during use, as well as to thermal cycles due to friction or high-temperature operations, and even to the corrosive effects of cooling fluids. For example, the YG alloy used in drawing steel wire molds is ultimately destroyed due to stress corrosion cracking caused by selective dissolution of the Co binder phase in the lubricating fluid, leading to formation of a fracture source.

fatigue fracture of cemented carbide roll

How does the fatigue fracture of cemented carbide material occur? 5

During the normal use of the roll (ring), the general damage begins with surface “cracks”. This kind of crack is usually caused by thermal fatigue cracks generated by the interaction of friction heat and cooling water generated during the use of the surface. As this network-like cracks extend, it gradually causes alloy peeling and even crushing of the roll. Research indicates that the actual damage analysis of wire and rod rolls shows that the fracture source mainly originates from the voids inside the material and the groove bottom or groove surface of the roll.

 

Methods for improving material fatigue limit or fatigue strength

It is generally difficult to change the service conditions of parts, and it is necessary to improve the design of parts as much as possible, such as starting with surface effects. As long as the structural materials and mechanical parts are prevented from surface stress concentration, dislocation slip accumulation, and plastic deformation, fatigue cracks are not easy to nucleate and expand, which will increase the fatigue limit or fatigue strength.

Measures to slow down stress concentration

Square or sharp-angled holes and slots should be avoided in the design.

For sudden changes in cross-sectional dimensions (such as the shoulder of a stepped shaft), use a transition fillet with a sufficiently large radius to reduce stress concentration.

When it is difficult to increase the radius of the transition fillet due to structural reasons, a thinning groove or relief groove can be cut on the part of the shaft with a larger diameter.

Strengthen the surface strength

Mechanical methods are used to strengthen the surface layer (such as rolling, shot blasting, etc.), which results in a pre-stressed layer on the surface of the component, reducing the surface tensile stress that is prone to causing cracks, thereby improving fatigue strength. Alternatively, thermal and chemical treatments such as high-frequency quenching, carburizing, nitriding, etc. can be used.

Use small gravel with a diameter of 0.1-1mm to impact the surface of the sample at high speed to remove sharp corners, burrs, and other areas prone to stress concentration, and compress the surface to a depth of 1/4-1/2 the diameter of the steel ball, causing residual stress on the surface of the part and inhibiting the propagation of fatigue cracks.

 

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 久久国色夜色精品国产-国产微拍福利一区二区-91超碰青草福利久久尤物-国产精品97在线观看| 超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 日本一区二区三区在线视频-国产午夜性生活免费视频-亚洲老熟妇av熟妇在线-久久热这里只有精品国产| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 亚洲国产高清在线一区二区三区-最近免费视频观看在线播放-中出内射视频在线播放-97碰碰日本乱偷人妻禁片| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 日韩黄色精品中文视频-久久精品国产亚洲懂色-欧洲美女日韩精品视频-国产一区二区三区精品愉拍| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看| 国产欧美日韩一区二区三区88-国产亚洲av嫩草精品影院-成人国产一区二区三区麻豆-在线观看午夜宅男视频| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 日本三十四十五十路熟妇-国产一区二区三区蜜桃视频-蜜桃传媒第一区免费观看-来点刺激的视频日韩经典三级| 国产精品福利一区二区三区-日韩精品国产精品高清-日韩亚洲精品中文字幕在线观看-国内偷拍免费视频91| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 精品国产成人亚洲午夜福利-午夜福利一区二区91-亚洲中文字幕女优最新网址-亚洲av成人国产精品| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区|