色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

In recent years,YG8 tungsten carbide (WC) materials have gained increasing attention due to their excellent wear resistance, corrosion resistance, and high-temperature oxidation resistance. This paper uses a self-made shock wave-driven gas-solid two-phase flow erosion-wear experimental device to study the erosion-wear characteristics of carbide YG8 under various conditions and to reveal its erosion-wear mechanisms.

 

Erosion-Wear Experimental Materials and Equipment

Experimental Materials

Tungsten carbide (WC) carbide?is a composite material produced using powder metallurgy techniques, with WC, a metal carbide that is difficult to dissolve, as the matrix and a binder added. It is characterized by high hardness and strong wear resistance. The WC carbide?used in this experiment is YG8, which is employed as the coating material for the valve core and outlet sleeve in coal direct liquefaction devices. YG8 is a tungsten-cobalt carbide?with a cobalt binder, a density of 14.6 g/cm3, a hardness of HV 1350, an elastic modulus of 540 MPa, a bending strength of 1500 MPa, and a compressive strength of 4470 MPa.

The experiment uses quartz sand (SiO?) particles as the erosion particles, which are commonly used in erosion-wear tests. The particles are sieved to achieve an average particle size of 150 μm, as shown in Figure 1.

Study on the Erosion-Wear Performance of YG8 carbide 2

Experimental Equipment

The experiment uses a self-made shock wave-driven gas-solid two-phase flow erosion-wear testing device. This device primarily consists of a shock wave generator, a velocity measurement system, a high-speed camera, a heating system, and a temperature control system.

Study on the Erosion-Wear Performance of YG8 carbide 3

In this setup, nitrogen gas is connected to the driving section to generate shock waves with a specific Mach number. The driving section and the driven section are separated by an aluminum film. Experimental particles are placed on a tin foil located between the driven section and the accelerating section. By adjusting the pressure relief valve, gas is introduced into the driving section of the shock tube. When the pressure difference across the film reaches a critical value, the film ruptures suddenly, generating a shock wave. The high-speed gas flow then propels the solid particles through the accelerating section to the desired experimental velocity. Upon impacting the specimen surface, the high-speed particles cause material loss, thus facilitating the erosion process.

The driving section, driven section, and accelerating section are each equipped with dynamic pressure sensors, charge amplifiers, and dynamic test analyzers to measure shock wave velocity. A high-speed camera in the experimental section captures the particle motion trajectories. The specimen holder is equipped with a temperature heating system and a temperature control system, allowing for adjustment to the required experimental temperature.

 

Erosion-Wear Experimental Parameters and Methods

Experimental Parameters

The impact angle, denoted as θ (see Figure 3), is defined as the angle between the axis of the shock tube and the surface of the specimen being eroded (0°to 90°). The desired impact angle is achieved by rotating the specimen holder.

The impact distance L is the distance between the center of the shock tube’s outlet and the center of the specimen’s surface. Typically, L is set between 30 and 50 mm during experiments. When conducting experiments at different impact angles, the position of the shock tube needs to be adjusted to maintain a consistent impact distance.

Study on the Erosion-Wear Performance of YG8 carbide 4

In the experiment, the impact velocity is adjusted by changing the thickness of the aluminum foil. Aluminum foils with thicknesses of 0.13 mm, 0.20 mm, and 0.30 mm are used for the erosion-wear tests. A high-speed camera is employed to record the particle trajectories. By analyzing these trajectories, the particle velocity v p is determined.

Study on the Erosion-Wear Performance of YG8 carbide 5

In the equation, ΔI represents the distance between the ends of the particle clusters in consecutive frames, measured in meters; Δn is the number of frames between measurements; and f is the filming frequency, measured in frames per second (FPS).

Using the high-speed camera, the velocity of 150 μm SiO? particles is tested. By replacing aluminum foils of different thicknesses, the corresponding membrane rupture pressure ratios are obtained, which in turn allows for the determination of the impact velocity. The velocities corresponding to different aluminum foil thicknesses are summarized in Table 1. The specific calculation method for particle velocity can be found in the referenced literature.

Study on the Erosion-Wear Performance of YG8 carbide 6

Experimental Method

Before the experiment, the nickel-based carbide specimens are first polished using 1000# sandpaper. The specimens are then cleaned with an ultrasonic cleaner, air-dried, and weighed to obtain an average value. The specimens are fixed onto the specimen holder, and the angle of the specimen and the distance between the shock tube and the specimen are adjusted. The temperature control system is activated, and the experimental temperature is set. Aluminum foils of the appropriate thickness are selected and solid particles are loaded simultaneously.

The lighting is turned on, and the dynamic testing analyzer and high-speed camera are activated. The camera lens height is adjusted so that the distance from the shock tube outlet to the specimen surface is within the field of view of the high-speed camera. The nitrogen gas valve is then opened to start the experiment. When the aluminum foil ruptures, the valve is immediately closed, and the high-speed camera captures the particle trajectories during the experiment.

At the end of the experiment, the specimen is cooled, cleaned, and dried. The specimen is weighed 10 times using an electronic balance to record the average weight. The erosion-wear rate is then calculated using equation (2).

Study on the Erosion-Wear Performance of YG8 carbide 7

In the equation, E represents the erosion-wear rate, measured in mg/g; Δm is the mass loss of the material, measured in mg; and m p is the mass of a single impact particle, measured in grams.

 

Analysis and Discussion of Erosion-Wear Experimental Results

Effect of Impact Angle on YG8 Wear Rate

Under an impact velocity of 175 m/s, the erosion-wear rates of the specimens were measured by varying the impact angles, as shown in Figure 4.?YG8

From Figure 4, it can be observed that the erosion-wear rate of the specimen initially increases and then decreases as the impact angle increases. The erosion-wear rate reaches its peak at an impact angle of 75°. The experimental results indicate that YG8 is a typical brittle material, with the maximum erosion-wear rate occurring at high impact angles. The erosion-wear characteristics of YG8 are consistent with the behavior of brittle materials, where the erosion-wear rate varies with the impact angle.

 

Impact Angle on Coating Erosion-Wear Performance

Particle velocity is a crucial factor affecting the wear rate of materials. Impact experiments were conducted on specimens at impact angles of 30°, 60°, and 90° under three different impact velocities: 148 m/s, 175 m/s, and 200 m/s. The relationship between erosion-wear rate and particle impact velocity is shown.

Figure 5 demonstrates that, at all three impact angles, the erosion-wear rate of the material increases with increasing impact velocity. There is a critical impact velocity at which erosion-wear begins, related to the abrasive properties and the material’s characteristics. Erosion-wear occurs only when the velocity exceeds this critical value. Extensive erosion tests indicate that the erosion-wear rate has the following relationship with particle velocity:

E=kv” (3)

where

v is the particle velocity in m/s;

k is a constant; and

n is the velocity index. A higher

n value indicates that the erosion-wear rate of the material is more influenced by the particle impact velocity.

Fitting the experimental data to equation (3) yields velocity indices of 2.34, 2.27, and 2.28 for impact angles of 30°, 60°, and 90°, respectively, for YG8 material.

 

Analysis of Erosion-Wear Mechanisms

Analysis of the erosion-wear morphology of specimens at an impact angle of 90° reveals that the erosion-wear is primarily driven by the impact forces of the solid particles directly striking the composite layer. Due to the high brittleness of both tungsten carbide particles and the composite layer matrix, high-velocity solid particle impacts more readily induce plastic deformation or crack formation, leading to the development of pits and cracks.

During the erosion process, the abrasive quartz sand continuously impacts the surface, creating numerous pits. The edges of these pits accumulate material that has been deformed and squeezed out, forming a lip-like flange. With continued particle impacts, this flange is progressively eroded and stripped away due to repeated compression. The wear mechanism can be summarized as erosion-induced compression leading to pit formation and material detachment.

As the reinforcement phase, WC particles have much higher hardness and stiffness compared to quartz sand, which helps them better withstand the abrasive impacts. During the erosion-wear process, the coating undergoes cutting and plowing effects from the sharp edges of the abrasive particles, resulting in plastic deformation, progressive fatigue, and delamination. The protruding WC particles bear the brunt of the abrasive impact. Table 2 shows the elemental chemical composition of the specimen surface before and after the erosion experiments.

 

Wniosek

As the impact angle increases, the erosion-wear rate of YG8 material first increases and then decreases, reaching a maximum at an impact angle of 75°. YG8 exhibits the erosion-wear characteristics typical of brittle materials.

At impact angles of 30°, 60°, and 90°, the erosion-wear rate of YG8 material increases with rising impact velocity. The corresponding velocity indices, obtained from fitting the erosion-wear rate versus velocity relationship, are 2.34, 2.27, and 2.28, respectively.

The primary erosion-wear mechanism for YG8 material involves the formation of pits and microcracks on the material surface due to high-angle impacts. These features are caused by the detachment of Co and WC particles from the matrix and the development of microcracks under high-velocity impacts.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 国产精品一区二区在线观看免费-日本老熟妇色视频免费-亚洲码国产精品高潮在线-日韩一区二区三区日韩| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 国产在线一区二区三区不卡-久久精品女人毛片水多国产-无人区一码二码三码四码区免费-日韩亚洲国产成人在线| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 不卡一区二区三区视频-国产亚洲91精品色在线观看-国产精品青草久久福利不卡-国产黄色免费精品网站| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 四十如虎的丰满熟妇啪啪-国产三级电影在线免费看-国产综合色香蕉精品五夜婷-免费观看日韩三级视频| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 国产成人啪午夜精品网站-国产乱码精品一区二区三区-男人天堂网av一区二区三区四区-亚洲第一区二区精品三区在线| 日本女同免费在线观看-在线视频成人国产自拍-日韩av在线观看大全-后入翘臀剧情片在线看| 国产成人啪午夜精品网站-国产乱码精品一区二区三区-男人天堂网av一区二区三区四区-亚洲第一区二区精品三区在线| 青青草高清视频在线播放-熟女在线视频一区二区三区-亚洲国产中文字幕av-久久这里只有精品久久热| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 极品尤物在线免费观看-超碰九七精品在线观看-午夜爱爱免费观看视频-日本免费人成黄页在线|