色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Chip build-up is a tough issue. In order to reduce the consumption of cutters in batch production and lower the cost of cutter wear and tear during the production process, an analytical method combining theory and practice is adopted. By comprehensively analyzing the working conditions during the machining process, including machining efficiency, cooling methods, and product material, the adhesion of aluminum caused by the melting of aluminum is treated in practice to achieve cutter reuse, thereby reducing the cost of cutter consumption.

Chemical Treatment Method for Chip Build-up on Cutters during Aluminum Alloy Machining 2

Preface

With the rapid development of China’s automotive industry, the new energy vehicle industry has experienced exponential growth in recent years. Lightweight is a core topic in the new energy vehicle industry, and the core of lightweight is the transformation of traditional materials. Aluminum alloys, with their high strength and light weight, are indispensable materials for lightweight automotive manufacturing. The geometric shapes of auto parts are relatively complex, and the proportion of die-cast aluminum alloy parts in the whole vehicle is increasing, as is the demand for CNC machining of die-cast parts.

The CNC manufacturing of aluminum alloy auto parts mainly requires high efficiency, high stability of continuous production, and continuously reducing costs, which necessitates more detailed control and planning of the entire production process.

Chemical Treatment Method for Chip Build-up on Cutters during Aluminum Alloy Machining 3

Formation of Chip Build-up during Aluminum Alloy Machining

The main characteristic of aluminum in the machining process is its low melting point, which is manifested as “stickiness” in the working conditions. Due to this characteristic and insufficient cooling in actual working conditions, the heat generated by friction during the microscopic machining process cannot be released in a timely or effective manner. As a result, the aluminum melts and adheres to the cutting edge and chip flute of the cutter. When it cools, it instantly solidifies and adheres to the cutter, forming a chip build-up, leading to the scrapping of the cutter. This issue is commonly referred to in the industry as “easy to stick to the cutter.”

Cutters are a consumable in the CNC machining process and account for a significant portion of cost expenditures. The cutting edge of aluminum alloy-specific cutting tools should be sharper, and the chip flutes need special polishing treatment and an aluminum alloy-specific coating to improve the chip evacuation efficiency. The high-efficiency production in the automotive industry necessitates that cutters must increase feed rates and linear speeds, which in turn increases the heat generated during cutting, increases the risk of aluminum melting and sticking to the cutter, and leads to increased costs due to the scrapping of cutters caused by chip build-up.

With the requirements of environmental protection, the CNC machining of aluminum alloys extensively uses MQL (Minimum Quantity Lubrication) as a substitute for cutting fluids. The low melting point characteristic of aluminum, combined with the reduced cooling effect of MQL, further promotes the formation of chip build-up. Tools scrapped due to sticking account for about 409% of the total conventional scrapping of tools. Since traditional methods for dealing with chip build-up generally involve knocking or smashing, very few treated tools can be reused. Therefore, a new solution is proposed.

chip build-up

Treatment Measures

The specific treatment measures of the new solution are as follows:

Remove the cutter with existing chip build-up.

Find solid NaOH and dilute it with water, then place it in a ceramic container.

Once diluted into a NaOH solution, immerse the cutter with adhered aluminum into the solution, ensuring the aluminum-adhered parts are fully submerged, and continue for 2 hours, or prolong the immersion time based on the actual situation. A comparison of the traditional treatment method and the new solution is shown in Table 1.

 

Chemical Mechanism of Treating Chip Build-up

Taking the commonly used AIS7Mg material for automotive parts as an example, the content of Al is about 93.59%, the content of Si is 6.59%, and the content of Mg is 0.259%. Both Al and Si can react with NaOH solution. Soaking in NaOH solution can remove the main Al components remaining on the cutter. The principle is that the metal reacts with NaOH to produce bubbles (5), which eventually causes the adhered aluminum to fall off. The chemical reaction equations are as follows:

The reaction equation between Si and NaOH is:

Si + 2NaOH + H?O = Na?SiO? + 2H?↑

The reaction equation between Al and NaOH is:

2Al + 2NaOH + 6H?O = 2NaAl(OH)? + 3H?↑

Final conclusion: The aluminum is removed, and the cutting tool can be reused.

 

Experimental Verification

The above theory was tested using taps. The reason for choosing taps is that in aluminum alloy machining, taps are among the higher-value cutters and are tasked with a longer service life mission. Moreover, their geometric shape is complex, and the grooves are narrow, making it basically impossible to clear the adhered aluminum using physical methods after the sticking phenomenon occurs. Testing this type of cutter is more meaningful and representative.

Due to the high heat generated during machining and possible insufficient cooling, the aluminum is instantly melted and sticks in the grooves, indicating that the tap can no longer be used, and the thread profile is damaged.

According to the above chemical theory, the tap with adhered aluminum (chip build-up) was completely soaked in NaOH solution. After complete immersion in NaOH, the tap was visually inspected, and the chip build-up in the grooves had completely fallen off, with residual aluminum debris in the experimental vessel. The treated tap was used again to machine workpieces, and the thread profile of the workpiece was found to meet the requirements, with the thread being qualified. The tap could be reused.

 

Wniosek

The automotive parts industry is characterized by mass production. The matching of new equipment and specially designed cutters requires a large amount of cutting verification during the initial setup. During the verification process, due to factors such as parameter matching, the breaking-in of new equipment, and the inexperience of the debugging personnel, the phenomenon of chip build-up on cutters is relatively common, leading to a straight-line rise in scrapping costs and production cycles. Additionally, issues such as changes in blank allowances and momentary cooling instability during the later stages of mass production, which lead to aluminum adhesion, have been effectively resolved after applying this method. This has greatly saved on cutter costs and processing time, increased the service life of the cutters, and significantly reduced the production costs for the enterprise.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 久久精品国产色蜜蜜麻豆-国产精品一区二区三区你懂的-日本国产精品中文字幕-91黄色国产在线播放| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 日本一区二区三区在线视频-国产午夜性生活免费视频-亚洲老熟妇av熟妇在线-久久热这里只有精品国产| 国产白浆一区二区在线观看-青草衣衣精品国色天香亚洲av-欧美午夜福利性色视频-成人亚洲一区二区三区在线观看| 女人毛茸茸的外阴视频-成人激情午夜福利视频-国产精品性色一区二区三区-国产中文字幕欧美激情| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 精品国产精品久久一区免费式-男女高清无遮挡免费视频-av男人的天堂一区二区三区-免费观看视频网站97| 在线视频国产一区二区三区-亚洲欧美日韩国产经典-性插亚洲香蕉在线视频-亚洲成人国产超级黄色| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 日本三十四十五十路熟妇-国产一区二区三区蜜桃视频-蜜桃传媒第一区免费观看-来点刺激的视频日韩经典三级| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 国内自拍视频在线观看h-亚洲美女性生活一级片-香蕉久久夜色精品国产成人-亚洲国产成人久久综合人| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 日本三区三级岛国片在线观看-免费av在线观看岛国大片-av在线导航国产精品-中文资源网天堂网亚洲精品| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 国产精品女同一区二区久久夜-日本精品女人一区二区三区-亚洲成人久久久久久-激情五月婷婷综合激情| 中文字幕乱码亚洲精品-亚洲伊人久久大香线蕉-麻豆视传媒视频短免费网站-极品美女被后入干出水视频| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 特大毛片毛片免费视频-成人伊人青草久久综合网-91亚洲蜜桃内射后入在线观看-日韩情色电影中文字幕| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频|