色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The wear resistance and toughness of carbide woodworking tools are difficult to balance. Usually, tool users can only choose the appropriate grade from many carbide grades based on the specific processing object. Here, we discuss how to further improve the cutting performance of carbide woodworking tools from the tool itself. Currently, the research hotspots on this issue mainly focus on the following aspects:

Improving the grain size of carbide woodworking tools

By refining the grain size of the hard phase, increasing the surface area between grains, and enhancing the bonding force between grains, the strength and wear resistance of carbide?tool materials can be improved. When the WC grain size is reduced to below submicron size, the hardness, toughness, strength, and wear resistance of the material can be improved, and the temperature required for complete densification can also be reduced. The grain size of ordinary carbides is about 3-5 μm, while that of fine-grained carbides is 1-1.5 μm, and that of ultra-fine-grained carbides can be below 0.5 μm. Compared with ordinary carbides with the same composition, the hardness of ultra-fine-grained carbides can be increased by more than 2 HRA, and the bending strength can be increased by 600-800 MPa.

carbides based on ultra-fine WC grains as the matrix, combined with TiAlN PVD coating, can make the cutting edge of the tool highly ductile during interrupted cutting, while also having extremely strong resistance to thermal deformation.

Surface, overall and cyclic heat treatment for carbide woodworking tools

Surface treatment such as nitriding and boriding can effectively improve the wear resistance of carbide?with good toughness. Overall heat treatment can change the composition and structure of the binding phase in carbide?with good wear resistance but poor toughness, reduce the adjacency of WC hard phase, and thus improve the strength and toughness of carbide. The cyclic heat treatment process can relieve or eliminate the stress between grain boundaries, which can comprehensively improve the performance of carbide?materials.

Improving cutting performance by adding rare metals Adding rare metal carbides such as TaC and NbC to carbide?materials can form a complex solid solution structure with the existing hard phase WC, further strengthen the hard phase structure, and also suppress the growth of hard phase grains and enhance the uniformity of the structure. This is highly beneficial for improving the overall performance of carbide. In the ISO standard P, K, and M carbide?grades, there are carbides added with Ta (Nb) C.

carbide woodworking tool

Adding rare earth elements to carbide material

Adding a small amount of rare earth elements such as yttrium to carbide materials can effectively improve the toughness and bending strength of the material, and also improve the wear resistance. This is because rare earth elements can strengthen the hard and binding phases, purify grain boundaries, and improve the wetting of carbide solid solution on the binding phase. carbides added with rare earth elements are most suitable for rough machining, and with abundant rare earth resources in China, they have broad prospects for application in the production of carbide woodworking tools.

Coated carbide woodworking tools

A thin layer of wear-resistant metal compounds, such as TiN and TiC, can be deposited on a tough carbide?substrate using methods such as CVD (chemical vapor deposition), PVD (physical vapor deposition), PVCD (plasma-enhanced chemical vapor deposition), and HVOF (high-velocity oxy-fuel spraying). TiC has high hardness (HV3200) and good wear resistance, so the coating thickness is generally 5-7μm. TiN has lower hardness (HV1800~2100) and lower adhesion to the substrate, but it has good thermal conductivity and high toughness. The coating thickness can reach 8-12μm, and it can combine the toughness of the substrate with the wear resistance of the coating, thereby improving the overall performance of the carbide?tool. Coated carbide?tools have the following advantages:

  1. Good wear resistance and heat resistance, especially suitable for high-speed cutting;
  2. Coated carbidetools have strong resistance to chipping and notch wear, and the tool shape and groove shape are stable;
  3. The chip breaking effect and other cutting performance are good, which is beneficial to the automatic control of the machining process.
  4. After passivation and refining treatment, the substrate of coated carbide tools has high dimensional accuracy, which can meet the requirements of automatic machining for tool change positioning accuracy. However, the use of coating methods still cannot fundamentally solve the problem of poor toughness and impact resistance of carbide substrate materials.

Nanocoating

Nanocoating is a rapidly developing new coating technology in recent years. The grain size of the coating material is generally below 100 nm and it has good cutting performance. In the coating, the surface smoothness of the coating is improved by grain refinement technology, so that the coating surface is smooth, which can improve the anti-friction and anti-adhesion ability of the coating tool. A CVD coating composed of nanoscale TiCN with inhibited crystal growth and nanoscale Al2O3 with inhibited crystal growth can be selected for the front cutting surface. The coating has extremely high toughness and wear resistance. Applying ultra-fine grain TiCN on a special carbide substrate improves the adhesion between the coating and the substrate. Then, an ultra-fine and super smooth FF aluminum-based film is coated on top of it, which increases the surface hardness by 30% and reduces the roughness value by 50%. Compared with ordinary carbides, nanocoating improves processing efficiency by 1.5 times and extends the life of carbide woodworking tools by more than 2 times.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 2

Diamond Coatings

Coating the front surface of a carbide?insert with a CVD diamond film (20μm thick) is a good choice. Although coating peeling can become a serious problem, as long as the coating does not peel, tool wear can be ignored and maintained at 40-50μm. The milling test of medium-density fiberboard using a diamond-coated carbide?insert shows that the diamond film has different degrees of peeling, but the unpeeled film always provides good protection. The tool wear resistance of the diamond coating is nearly twice as high as that of the uncoated one.

With the improvement of coating technology and equipment, the adhesion between the diamond film and the tool substrate will be further improved, and the problem of film peeling will be improved. At present, diamond-coated carbide?materials have been used to manufacture tools for processing reinforced flooring, which is used to cut the aluminum oxide wear-resistant layer on the surface of the reinforced flooring, and the effect is good. However, the purity of CVD diamond polycrystalline film is very high, its hardness (HV9000~1000) is close to natural diamond, and its processability is poor. It is difficult to achieve conventional mechanical processing or electrochemical corrosion. Therefore, diamond-coated carbide?materials are suitable for manufacturing insert blades that do not require regrinding.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 3

Wniosek

Carbide woodworking tools have become the main variety in the wood processing industry and will continue to occupy an important position in wood cutting for a considerable period in the future. With the continuous improvement of various carbide performance improvement technologies and coating technologies, the cutting performance of carbide woodworking tools will continue to improve.

 

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 成人在线永久免费视频-日本理论电影一区二区三区-中文字幕成人av电影-91麻豆精品国产91久久麻豆| 亚洲av午夜福利精品一区二区-久久精品国产亚洲熟女-亚洲综合五月婷婷六月丁香-久久国内精品自在自线91| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 青草黄色成人中文视频-国产剧情av在线大学生-日韩av在线一卡二卡三卡-国产成人午夜福利影院| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 不卡一区二区三区视频-国产亚洲91精品色在线观看-国产精品青草久久福利不卡-国产黄色免费精品网站| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看| 精品国产一区二区三区色搞-国产极品尤物精品视频-亚洲中文字幕乱码亚洲-午夜日本福利在线观看| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 亚洲一区二区三区久久av-国语精品视频自产自拍-99久久精品美女高潮喷水十八-55夜色66夜色亚洲精品视频| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 在线观看91精品国产性-国产中文字幕精品免费-免费日韩毛片在线观看-精品人妻暴躁一区二区三区| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 91精品在线播放黑丝后入-97免费在线播放视频-av网站天堂网国产av-亚洲熟妇乱色一区二区三区| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 亚洲毛片在线观看视频网站-午夜高清福利在线观看-性生活视频在线免费观看-女人吞精口爆在线视频| 久久99国产精品久久99蜜桃-国产在线精品福利91啪-日本啪啪免费观看视频-免费看的日麻批网站视频| 亚洲免费看三级黄网站-日韩国产熟女免费精品老熟女视频-久青草视频免费在线播放-国产日韩精品久久一区二区| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看|