色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Carbide grain inhibitors are currently recognized by the academic community as the best method for controlling the grain size of hard alloys. From a vast amount of research reports, we have learned that the effectiveness of inhibitors mainly depends on the following factors:

1The solubility of carbide grain inhibitor in the bonding phase.

Generally, the less stable the inhibitor is, the higher its solubility in the bonding phase, and the more obvious its effect in inhibiting grain growth.

2The eutectic temperature of the inhibitor and Cobalt.

Among the existing grain growth inhibitors, VC and Cr3C2?have the lowest eutectic temperature with Co, and their solubility in the bonding phase is the highest, too. Therefore, they have the most significant effect in inhibiting the growth of WC grains.

Therefore, Meetyou?conducts this?laboratory research on grain growth inhibitors VC and Cr3C2. This research studies the content and particle size of the two inhibitors when added alone or in combination, and their effects on the mechanical properties of WC-10 Co hard alloys. We’ll learn about the ideal proportion of the two inhibitors by our experimental research.

 

Test Data

The effect of adding a single inhibitor, Cr3C2?and VC, on the performance of WC cemented carbide

0.5 μm of VC or Cr3C2?was added to the alloy. The relationship between the amount of?carbide grain?inhibitor added and the hardness of the alloy is shown in Figure 1 and Figure 2.

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 1

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 2

From Figure 1 and Figure 2, it can be seen that under the same alloy preparation process, with the increase of Cr3C2 content, the hardness of the alloy shows a gradually increasing trend, and VC is more effective than Cr3C2 in improving the alloy hardness. From Figure 3 and Figure 4, it can also be seen that the cemented carbide with added VC carbide grain inhibitor has a relatively small and uniform grain size, especially avoiding the occurrence of large particles, so its hardness is slightly higher than that of the cemented carbide with added Cr3C2.

The impact of inhibitors with different particle sizes on the performance of cemented carbide

In this experiment, VC powder and Cr3C2 powder were chosen as inhibitors, with a ratio of m(Cr3C2)/m(VC) = 0.5/0.5. The performance of the prepared cemented carbide is shown in Table 1.

relation between gran size of carbide grain inhibitor and cemented carbide

From the data in Table 1, it can be visually seen that as the particle size of the inhibitor decreases, the hardness of the cemented carbide gradually increases. This is because the smaller the particle size of the inhibitor, the more uniform the distribution of the resulting cemented carbide after ball milling, and the more significant the inhibitory effect on the WC grain size. In addition, due to the refinement of the WC grain size, the hardness also increases. From the experimental data listed in Table 1, it can also be seen that the comprehensive performance of ultrafine WC-Cobalt 10% carbide grain inhibitor is better when the particle size of the inhibitor is 0.5 μm, and the density can reach 98.9, and the HRA hardness can reach 91.9.

 

The influence of different ratio amounts of carbide grain inhibitor

VC, Cr3C2, tantalum carbide, and niobium carbide are used as inhibiting additives to inhibit the growth of WC grains. They form a solid solution with WC or are preferentially dissolved in the metallic liquid phase binder. This mechanism increases the hardness of WC but is detrimental to the strength of the cemented carbide. The main reason for the decrease in strength is the unevenness of the WC grains, that is, the presence of locally coarse grains. Therefore, in the manufacture of ultrafine cemented carbide, the uniformity of the microstructure should be noted. The non-uniform distribution of any carbide grain?inhibitor will lead to local WC grain coarsening and the formation of cobalt pools. Therefore, this experiment uses composite inhibitors to balance the properties of cemented carbide. VC and Cr3C2 inhibitors have this synergistic effect. Therefore, in this experiment, WC-Co 10% is used as the research matrix, and the total amount of composite inhibitors of VC/Cr3C2 is controlled within 1.0%. Table 2 shows the properties of cemented carbide obtained by changing the different ratio amounts of VC/Cr3C2.

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 3

According to Table 2, when 0.6VC-0.4Cr3C2 inhibitor is added, the bending strength of ultrafine-grained cemented carbide is 2954 MPa and the hardness is 91.9, showing better comprehensive properties. Figures 5(a) and (b) are SEM images of cemented carbide with and without the addition of 0.6VC-0.4Cr3C2 inhibitor, respectively. By comparing Figure 5 with Figures 3 and 4, it can be seen that the WC grains in cemented carbide with 0.6VC-0.4Cr3C2 inhibitor added are small and uniform, so its bending strength and hardness are high.

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 4

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 5

Working mechanism of grain inhibitor

The main function of the carbide grain inhibitor is to suppress the excessive growth of tungsten carbide grains during the sintering process, ensuring good hardness and strength of the material. As the inhibitor content increases, the trend of grain growth becomes less obvious, and the hardness of the cemented carbide becomes higher. To improve the strength of cemented carbide, it is also necessary to add inhibitors with different compositions, i.e., adding composite inhibitors during the sintering process, and the proportion of the two inhibitors should be appropriate. According to the results of this experiment, the order of the effectiveness of grain growth inhibitors in improving the strength of WC-Co-based cemented carbide is VC+Cr3C2>Cr3C2>VC.

The Most 2 Effective Carbide Grain Inhibitor for WC-Co Carbide 6

The study shows that V was not detected in the cobalt phase of WC-Co cemented carbide with VC added alone by energy dispersive X-ray spectroscopy (EDXS). However, Cr3C2 was found in the cobalt phase of cemented carbide with Cr3C2 added alone, but the distribution of Cr3C2 was uneven. Near the interface of Co/WC, the content of Cr3C2 was higher than that in the diamond phase and enriched on the basal and edge planes of WC grains. VC adsorbs on the surface of tungsten carbide particles, reduces the surface energy of WC, reduces the solubility of WC in the liquid phase, inhibits the dissolution and growth of WC grains, and V will segregate after cooling and precipitate as (V, W)C at the WC/y and WC interfaces, which hinders the migration of WC grain boundaries and prevents the aggregation and growth of WC particles. Cr3C2 dissolves in the liquid phase cobalt, slowing down the liquid-phase recrystallization of WC.

 

Wniosek

  1. Under the same preparation process of cemented carbide, the addition of single Cr3C2 content gradually increases the hardness of the cemented carbide, and VC is more effective than Cr3C2 in improving the hardness of the cemented carbide.
  2. The smaller the particle size of the inhibitor, the more obvious the inhibitory effect on the growth of tungsten carbide grains; at the same time, due to the refinement of WC grains, the hardness also increases. When the particle size of inhibitor is 0.5 μm, the comprehensive performance of the alloy is better, and the density can reach 98.9 and the hardness (HRA) can reach 91.9.
  3. When 0.6VC-0.4Cr3C2 inhibitor is added, the comprehensive performance of the ultrafine-grained cemented carbide is better, and the WC grains are fine and uniform, with a bending strength of 2954 MPa and a hardness of 91.9. (4) By analyzing the mechanism of the inhibitor, it can be known that both VC and Cr3C2 can inhibit the growth of WC grains.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

四虎永久精品免费在线-国产一级片内射在线播放-国产精品无套粉嫩白浆在线-色综合综合色综合色综合| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 亚洲一区二区日韩精品在线观看-白浆高潮国产免费一区二区三区-热久久这里只有精品99-亚洲精品在线观看中文字幕| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 亚洲精品中文字幕播放-9l精品人妻中文字幕色-亚洲不卡一区二区在线看-97精品国产在线观看| 四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| 自拍偷在线精品自拍偷99九色-国产在线日韩欧美91-成人性生交大片免费看r链接-黄色日本黄色日本韩国黄色| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 精品淑女少妇av久久免费-欧美激情亚洲精品一区-九九热在线视频观看精品-亚洲天堂激情av在线| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 国产一区二区三区在线播放-偷拍女厕尿尿在线免费看-午夜一区二区三区三区-国产精品一区二区三上人妻| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 蜜臀精品国产亚洲av尤物-日韩人妻少妇中文字幕-赶碰97在线公开视频-亚洲欧美日韩天堂综合| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 国产素人一区二区久久-欧美精品不卡在线观看-蜜桃精品一区二区在线播放蜜臀-欧美日韩精品在线一区二区三区| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 精品国产一区二区三区色搞-国产极品尤物精品视频-亚洲中文字幕乱码亚洲-午夜日本福利在线观看| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 久久只有这里的精品69-亚洲欧洲av黄色大片-人妻少妇被黑人粗大爽-成人性生交大片免费看av| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 国产女主播在线播放福利-日韩中文字幕综合第二页-av男人的天堂免费观看-国产乱码免费一区二区三区不卡| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热|