色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

In modern cutting tool materials, carbide?dominates. The development of coated carbide?tools around 1968 marked a significant revolution in the field of tool materials, advancing the level and capability of cutting processes considerably. The heat resistance of these tools has increased to over 1000-1200°C, while the processing temperature for Physical Vapor Deposition (PVD) typically remains below 500°C, making it a viable final treatment process for carbide?coatings. This enhances the cutting performance of carbide?tools, leading to their widespread use in high-speed cutting and machining of ultra-hard materials. Their excellent cost-performance ratio has propelled the development of carbide?tools to a new level.

Currently, TiN is the primary coating used for cutting tools; however, traditional nitride coatings like TiN have low hardness, poor wear resistance, and particularly weak thermal stability, which limits their application in dry cutting tools. Improvements in TiN coatings have focused on developing new TiN-based alloys and multi-component composite layers, aiming to achieve wear-resistant, high-temperature coatings through the introduction of alloying elements (such as Al, Zr, Cr, V) into the TiN coating. This forms a new multi-element coating system that enhances coating hardness and improves wear resistance and thermal stability. The novel TiAlN coating, formed by implanting Al atoms into the TiN lattice, has become one of the most widely used tool coatings in global manufacturing.

In recent years, to further enhance the high-temperature hardness and oxidation resistance of tool coatings, as well as to improve the bonding strength between the coating and the substrate, research has shifted towards multi-element and multilayer composite coating systems. This paper employs unbalanced magnetron sputtering to prepare composite coatings such as TiN, TiAlN, TiN-MoS?, and CrAlTiN on carbide?tools. It conducts cutting comparison tests on TiN and its composite-coated tools under dry cutting conditions, investigating the mechanical and cutting performance of TiN-based composite coated tools. This research is significant for the further development and promotion of coated tools.

How to Assess Coated Carbide?Tools' Cutting Performance 2

Experimental Methods

Composite coatings of TiN, TiAlN, TiN-MoS?, and CrAlTiN were deposited on YT14 carbide?tools using the closed-field unbalanced magnetron sputtering ion plating equipment from Teer. The nano-hardness and elastic modulus of the coatings were measured using a Nano Test 600 nano-hardness tester with a diamond tip under a load of 3 mN. To minimize experimental errors, the hardness and elastic modulus values reported are the averages of five measurements. Additionally, Vickers microhardness testing was conducted to validate the hardness measurements.

The morphology and phase structure of the tool coatings were analyzed using scanning electron microscopy (SEM) and an Advance 8 X-ray diffractometer (XRD). Cutting tests on the coated tools were performed in a CNC machining center, with the workpiece material being PCrNi3MoVA steel. The wear of the cutting edge was observed and measured using a 30x tool microscope. The tool life was evaluated based on the wear land width (VBc) on the flank face exceeding 0.6 mm as the criterion for tool lifespan, allowing for a comparison of the cutting life of the tools.

 

Experimental Results and Analysis

Hardness and Elastic Modulus Testing of Coatings

Figure 1 shows the loading-unloading curve obtained during the nano-hardness measurement of the CrAlTiN composite coating. This curve allows us to determine both the hardness and elasticity of the CrAlTiN film. The elastic recovery coefficient

R=(hmax-hres)/hmax ?is defined, where hmax?is the indentation depth at maximum load, and

hres?is the residual depth after unloading. A higher R value indicates greater elasticity. From the nano-indentation curve in Figure 2, the hardness of the CrAlTiN film is found to be 33 GPa, with an elastic modulus of 675 GPa.

Figure 2 also compares the nano-hardness of TiN, TiAlN, TiN-MoS?, and CrAlTiN coatings. The measured nano-hardness values are 18 GPa for TiN, 30 GPa for TiAlN, 15 GPa for TiN-MoS?, and 33 GPa for CrAlTiN. The order of nano-hardness for the four coatings is: CrAlTiN > TiAlN > TiN > TiN-MoS?. The addition of composite elements significantly alters the hardness of the TiN coating; in particular, the incorporation of Al increases the hardness by 12 GPa, while the addition of Cr and Al collectively raises the nano-hardness by 15 GPa. This indicates that Cr and Al form hard phases within the composite coating, enhancing its hardness. Conversely, the combination of TiN with MoS?results in a 3 GPa decrease in nano-hardness, suggesting that the MoS?phase exists as a soft phase within the coating, reducing hardness. However, this lubricating phase significantly improves the coating’s lubrication properties and lowers its friction coefficient.

How to Assess Coated Carbide?Tools' Cutting Performance 3

Figure 3 presents the measured elastic modulus values for each coating. From the figure, it can be observed that the elastic modulus of the TiN coating is 214 GPa, that of the TiAlN coating is 346 GPa, the TiN-MoS? coating has an elastic modulus of 164 GPa, and the CrAlTiN coating reaches 675 GPa. The order of elastic modulus for the four coatings is CrAlTiN > TiAlN > TiN > TiN-MoS?. This indicates that the elastic modulus of the coatings is directly proportional to their hardness. Notably, the CrAlTiN coating shows the greatest relative increase in elastic modulus, with a value significantly higher than the other coatings at 675 GPa. This demonstrates that the deposited CrAlTiN coating possesses both high hardness and high elasticity.

How to Assess Coated Carbide?Tools' Cutting Performance 4

At the same time, Vickers microhardness tests were conducted on each tool coating using a Vickers hardness tester, with an applied load of 15 g for 10 seconds. The results are shown in Figure 4. Although the testing principles of the Vickers microhardness and nano-indentation methods differ, a comparison of the nano-hardness values in Figure 2 and the microhardness values in Figure 4 reveals that the trends in microhardness for each coating are consistent with those of nano-hardness. Notably, the CrAlTiN coating exhibits the highest Vickers microhardness, measuring HV1560.

 

Drilling Tests

The four types of coated carbide?tools—TiN, TiAlN, TiN-MoS?, and CrAlTiN—were used to process the same material, PCrNi3MoVA steel, and the wear of the tools was evaluated to compare the durability of the different coated tools. The surface morphology of the coatings for the TiN, TiAlN, TiN-MoS?, and CrAlTiN tools is shown in Figure 5, all at a magnification of 600x. The figure illustrates significant differences in surface morphology among the four coatings, indicating that the incorporation of composite elements has greatly altered the crystallization state of the TiN compound.

The TiN coating shows a uniform surface microstructure with relatively small grains. In contrast, the TiAlN coating has a rougher surface morphology with larger grain structures. The addition of Al results in numerous bright white hard particles of aluminum oxide or aluminum nitride appearing in the TiN lattice. The TiN-MoS? coating features a substantial distribution of flake-like mixed structures, mainly composed of MoS? uniformly dispersed within the TiN/MoS?coating, contributing to its self-lubricating properties. The CrAlTiN coating exhibits relatively fine grains and a dense, uniform structure with a significant presence of hard particles on the surface.

The cutting test conditions for the coated tools are shown in Table 1. During the experiments, the conditions were kept constant, and the cutting time was recorded until the wear land width (VBc) on the flank face exceeded 0.6 mm, which was used as the criterion for tool life evaluation. The comparison of cutting life for the tools is presented in Figure 6.

From Figure 6, the ranking of cutting life for the four coated tools is as follows: CrAlTiN > TiN-MoS? > TiAlN > TiN. This indicates that the Cr and Al elements in the TiN coating form hard phases, and the addition of Al is beneficial for the formation of aluminum oxides, which helps prevent further oxidation during the cutting process, thereby enhancing the tool’s oxidation resistance and contributing to an increase in cutting life. Additionally, the MoS? lubricating phase helps reduce the friction coefficient and improve the wear resistance of the tools, further extending their service life.

How to Assess Coated Carbide?Tools' Cutting Performance 5

How to Assess Coated Carbide?Tools' Cutting Performance 6

In summary, the analysis indicates that the multi-component composite coatings effectively leverage the advantages of various coating materials, resulting in enhanced overall performance, excellent wear resistance, toughness, and reduced friction. This helps to minimize built-up edge formation while providing resistance to mechanical and thermal shocks, significantly extending tool life. Therefore, it is anticipated that the usage of multi-component composite coated tools will continue to increase in the future.

 

XRD Analysis

XRD analysis was conducted on the CrAlTiN tool coating, which exhibited the best cutting performance, with the results shown in Figure 8. The XRD patterns reveal that at room temperature, the crystalline phases of the coating are primarily composed of Cr, CrN, Cr?N, and TiN, with no amorphous phases detected. Further high-resolution scanning of the coating surface shows a significant distribution of hard phase particles. Combined with X-ray diffraction analysis, it is evident that these hard phases mainly consist of Cr, CrN, Cr?N, and TiN grains. These hard grains contribute to the improved cutting life of the coated tools.

coated tool  coated

Application Prospects

Coating technology for tools has proven to be an effective way to enhance the cutting performance of carbide?tools, improve cutting efficiency, and reduce processing costs. Since its introduction in the late 1970s, it has rapidly developed and been adopted worldwide. By the late 1980s, the proportion of complex carbide?tools using coatings in industrialized countries exceeded 60%, significantly improving cutting efficiency and yielding notable economic benefits. Currently, over 80% of carbide?tools used in CNC machines in Japan and Germany are coated, and the adoption of coatings in countries like Russia is also increasing.

However, the usage of coated tools in China remains limited, with even high-performance CNC machines often relying on standard carbide?tools with inferior cutting performance. This restricts the full potential of expensive equipment. Therefore, developing composite coating processes for carbide?tools is crucial for shifting China away from its reliance on imported high-performance tools and advancing the local coating technology.

Although coated carbide?tools are priced 50% to 100% higher than standard tools, their superior cutting performance, longer tool life, and higher production efficiency lead to lower costs per part compared to uncoated tools. This is particularly beneficial for complex tools with longer manufacturing cycles, such as gear cutters and broaches, where using coated tools not only offsets the coating costs but also provides significant economic benefits and better machining quality

Furthermore, coated tools facilitate dry cutting, eliminating the increased production costs and environmental pollution associated with cutting fluids, thus protecting worker health. Therefore, from both economic and social benefit perspectives, using coated carbide?tools is advantageous. In the future, as research into multi-component and multilayer composite coating technologies progresses, the lifespan of coated carbide?tools will further improve, significantly lowering manufacturing costs and broadening the application of these coatings.

 

Wniosek

This study utilized the closed-field unbalanced magnetron sputtering PVD coating process to prepare composite coatings such as TiN, TiAlN, TiN-MoS?, and CrAlTiN. Comparative tests of the mechanical and cutting performance of these coatings yielded the following results:

1.Nano-indentation analysis showed the order of nano-hardness for the four tool coatings as follows: CrAlTiN > TiAlN > TiN > TiN-MoS?. The elastic modulus was found to be proportional to hardness, and Vickers microhardness measurements further validated the accuracy of the nano-indentation tests.

2.Under dry cutting conditions while drilling PCrNi3MoVA steel, the cutting life of the coated tools ranked as: CrAlTiN > TiN-MoS? > TiAlN > TiN, indicating that multi-component composite coatings offer significantly better cutting performance than standard TiN coatings, marking a promising direction for the future development of coated tools.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 日韩性插视频在线观看-岛国在线播放免费av-亚洲午夜精品一区二区蜜桃-国产精品一区二区久久蜜桃麻豆| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 日本厕所偷拍美女尿尿视频-婷婷国产一区综合久久精品-欧美一日韩成人在线视频-四虎精品视频免费在线观看| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 国产激情在线观看视频-久久久精品国产视频在线-亚洲国产成人精品在线-亚洲乱码国产乱码精品视频| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 久久久免费福利视频观看-成年人在线观看视频免费播放-噜噜中文字幕一区二区三区-视频一区视频二区三区| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个|