色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Cemented carbide anvils are essential consumables within synthetic presses, and synthetic presses are the core equipment for producing diamond single crystals and cultivating diamonds. The synthesis chamber of a synthetic press can create an ultra-high-temperature (>1400℃), ultra-high-pressure (>5GPa) growth environment for synthesizing diamond single crystals, enabling the growth of active carbon atoms into stable diamond crystals.

Due to the construction of the press, the working surface of the anvil is much smaller than the piston area of the hydraulic cylinder. When a set of anvils is closed under the drive of the hydraulic cylinder to form a high-pressure chamber, pressures exceeding 10GPa and temperatures of over a thousand degrees Celsius can be reached within the chamber. It endures various types of stress, including compression, tension, and shear stress. Therefore, the quality of cemented carbide anvils is particularly crucial.

From which 2 Aspects can We Reduce the Damage to Cemented Carbide Anvils? 2

Control the quality from production perspective

Reduce the carbon distribution gradient within the cemented carbide

To obtain a high-quality cemented carbide anvil, it is necessary to ensure a uniform structure of the anvil. This requirement involves achieving uniform carbon distribution within the alloy. As previously mentioned, the cemented carbide anvil is a solid product. Therefore, during the removal of the forming agent, a certain amount of carbon residue is left in different parts of the cemented carbide anvil. This leads to a carbon gradient within the anvil, which directly affects its quality. Since the carbon gradient differs from the desired structure for anvil usage, efforts should be made to minimize or even eliminate this gradient, posing significant challenges to the manufacturing process.

Currently, there are several common methods to reduce this gradient effectively:

Production Method: Adopting continuous dewaxing and sintering or intermittent dewaxing with controlled atmosphere sintering in the production process.

Process Optimization: Adjusting the dewaxing process based on the dimensions of the anvil. For anvils of different specifications, employing a low-temperature, slow-speed dewaxing method helps to remove the forming agent in a controlled manner. This approach helps to keep the carbon gradient within a narrow range for the anvil.

 

Select appropriate cemented carbide grades based on different purposes

The grades suitable for cemented carbide anvils include YG6, YG8, and YG12x, among others.

YG6 grade cemented carbide is composed of 94% WC (tungsten carbide) and 6% Co (cobalt), primarily using medium-sized WC and Co particles. The higher content of the hard phase WC ensures the required compressive performance of the cemented carbide anvil. However, the lower content of the binding phase Co somewhat affects the tensile strength of the anvil, leading to a tendency for cracking during the diamond synthesis process. Additionally, controlling the carbon (C) content in YG6 cemented carbide anvil poses challenges, as free carbon or eta phase may form during synthesis, affecting the anvil’s usability.

YG8 grade cemented carbide contains 92% WC and 8% Co, making it a medium-sized particle cemented carbide. It exhibits not only good compressive performance but also excellent tensile strength. It has a longer service life and is less prone to early cracking.

YG12x grade cemented carbide is a fine-particle carbide. With a certain Co content, finer WC grain size leads to significant improvements in density, hardness, compressive strength, and other comprehensive properties. This makes YG12x an ideal choice among cemented carbide materials for anvils.

 

Prevent damage to cemented carbide anvils during usage

Forms of damage to cemented carbide anvils

For the majority of anvils, their failure is often characterized by the presence of one or several cracks on the 46-degree inclined plane, extending from that location to the top surface, ultimately leading to fracture. Analysis has indicated that the maximum shear stress experienced by the anvil occurs along the central axis, while the highest tensile stress takes place along the symmetrical line of the 46-degree inclined plane. Therefore, under the conditions of high temperature and high pressure during synthesis, if local stress becomes excessively concentrated, small internal cracks will gradually propagate towards the surface. This is the reason why cracks typically initiate from the 46-degree inclined plane and continue to propagate until a significant portion of the anvil fractures.

From which 2 Aspects can We Reduce the Damage to Cemented Carbide Anvils? 3

Uneven temperature during the usage of cemented carbide anvils

Uneven temperatures can also lead to the phenomenon of anvil cracking. Changes in temperature can cause objects to expand or contract, giving rise to thermal stress. Alternating thermal stress is one of the factors contributing to fatigue fracture in anvils. The highest temperature of the anvil occurs at the contact point between the anvil and the conductive steel part, while the lowest temperature is at the center of the anvil’s bottom surface. The maximum temperature difference between the anvil’s top surface and bottom surface is around 500°C. The uneven temperature distribution across the anvil’s surface leads to stress concentration and, consequently, fractures. Additionally, when an electric current is applied to the anvil, its lifespan is significantly reduced due to the uneven temperature distribution.

Using a press with unstable pressure

The poor stability of the ultra-high pressure equipment in the press is also one of the reasons for accidents. For example, inconsistent pressures and strokes among the six working cylinders or sudden drops in pressure in a particular cylinder can contribute to these incidents.

carbide anvil

Wniosek

Currently, the quality of cemented carbide anvils in China has evolved from the earliest versions weighing less than 3 kg to the present-day anvils weighing around 50 kg. Large-scale six-sided anvils have become dominant in the Chinese market for superhard material synthesis chambers. Fine-grain and sub-micron fine-grain cemented carbides have also become important directions for the development of new anvil materials. Their compressive strength and flexural strength have significantly improved. With the introduction of advanced cemented carbide technology into the production process of new material anvils, the practical application of large anvils made from new materials has reached a considerably high level. The hammer consumption for diamond production has been controlled to be less than 1 kg per 10,000 carats, with the best results ranging from 0.15 to 0.3 kg per 10,000 carats.

Currently, various superhard material manufacturers pursue larger-sized presses for efficiency, which results in the gradual enlargement of cemented carbide anvils. Generally, as cemented carbide anvils become larger, the chamber size increases, and their lifespan correspondingly decreases. From this perspective, it is important to design the geometric structure of anvils based on the principle of “supporting large masses.” Simultaneously, optimal parameters should be sought between enlarging the anvil and hydraulic cylinder dimensions and their lifespans, ensuring a more reasonable balance between technical and economic considerations.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 久热在线视频精品99-国产欧美日韩久久午夜-在线观看亚洲精品91-黄色大片一区二区久久精品视频| 亚洲一区二区三区免费视频观看-日韩情爱视频在线观看-丝袜美足在线视频国产在线看-日韩美女啪啪不卡视频| 邻居少妇毛多水多太爽了-男人天堂手机在线视频-国产精品国产三级国产专播-韩国女主播福利视频一区二区| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 精品国产一区二区三区吸毒-国产精品一品二区精品网站-偷拍美国美女厕所撒尿-日韩精品在线视频一二三| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 日本亚洲一线二线三线-九月丁香婷婷啪啪色综合-狠狠综合欧美综合欧美色-亚洲丁香视频中文在线| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 亚洲av高清网站夜夜去-拍国产乱人伦偷精品视频-成人日韩欧美在线观看-无遮挡国产精品一级二级三级视频| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 日本很污动漫在线观看-亚洲精品乱码国产精品乱码-日本亚洲一区二区三区四区-少妇高潮太爽了免费观看| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 国产一区二区三区在线播放-偷拍女厕尿尿在线免费看-午夜一区二区三区三区-国产精品一区二区三上人妻| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站|