色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

 

The article introduces a new method called “amorphous crystallization + reactive transformation” for preparing dense and uniformly structured nano carbides. The formation and evolution process of nanocrystalline multiphase structures are systematically studied. A series of heating and quenching experiments are designed to investigate the nanocrystalline nucleation and initial phase transformation of multicomponent amorphous powders. The parallel processes of grain growth and interface formation are explored, revealing their micro-mechanisms.

Furthermore, the study examines the influence of nanoscale structures and interface characteristics on the mechanical properties of the prepared nanocrystalline composite materials. It emphasizes the significant role and underlying mechanisms of interface coherency in refining the microstructure of carbides during the loading process. The insights provided by this research offer a new perspective on achieving high overall mechanical performance in nanocrystalline composite materials through the utilization of specific interface relationships.

 

Research Objective

carbide materials are generally hard and brittle, with very limited plasticity, primarily due to the intrinsic properties of the covalent bonds in the matrix ceramic phase. Due to the inherent characteristics of covalent crystals, strengthening strategies commonly used in metallic materials such as solid solution strengthening, dislocation (deformation) strengthening, and precipitation strengthening are difficult to apply to ceramics and ceramic-based composites. Fine-grain strengthening is often employed to enhance the strength of ceramic materials. However, as grain size decreases, especially when it reaches the nanometer scale, the hardness of ceramic grains increases, but the toughness decreases significantly. Therefore, finding an optimal balance between the hardness and toughness of ceramic materials has always been a challenging problem in the field.

WC-Co carbide is a typical representative of ceramic/metal composites. In ultrafine and nano carbides, as the grain size decreases, the volume fraction of interfaces increases rapidly. Hence, interface characteristics play an increasingly important role in the mechanical behavior of composite materials with refined grain structures. In nano carbide composites, refining ceramic grain size and modulating interface bonding characteristics can effectively improve their overall mechanical performance.

 

Research Methods

The Co-W-C amorphous powder mixture prepared using amorphous Co2W4C composite powder and carbon black first forms the Co3W3C phase as the temperature rises. Subsequently, the WC phase is formed, and finally, the Co phase is formed. Through the study of the growth process after the crystallization of WC, the formation and growth mechanism of the hard phase originating from the amorphous matrix in the WC-Co composite material are revealed.

In the initial stage of WC nucleation, WC crystals exhibit regular shapes on the observation plane and have equidistant edges along the [100] and [0001] directions. (0001) basal planes and (100) prism planes grow alternately through a “step” mechanism, where the step thickness is approximately 1 to 2 atomic layers. The growth of WC crystals along the [0001] and [100] directions is essentially isotropic, resulting in the formation of equiaxed (110) crystal faces.

 

Research Results

In the “amorphous crystallization + reactive transformation” new method described in this article, the WC and Co phases are formed through the crystallization and carbide process of the amorphous matrix. During this process, coherent or semi-coherent WC/Co phase boundaries (PB) are formed in the nanocrystalline WC-Co composite material. As the WC grains grow, S2 WC/WC grain boundaries (GB) may form between nanocrystalline grains. Simultaneously, PB and GB serve as diffusion and migration channels for atoms, promoting grain growth and phase evolution. Therefore, compared to traditional carbides prepared by sintering a mixture of WC and Co powders, the nano carbide fabricated using this method exhibits a significantly increased proportion of coherent interfaces.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 2

Microstructural evolution of amorphous Co-W-C powder at different temperatures in Figure 1: (a) At room temperature, disordered amorphous structure; (b) at 550 °C, preferential nucleation of Co3W3C nanocrystals; (c) at 750 °C, coexistence of amorphous matrix, Co3W3C nanophase, and a small amount of WC nanocrystals; (d) at 800 °C, nearing completion of crystallization; (e) at 900 °C, fully crystallized nanocrystalline structure; (f) at 1150 °C, dense nanocrystalline structure with only WC and Co phases.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 3

 

Figure 2: Phase and composition analysis of samples after heating-quenching at 800 °C and 900 °C:

(a) High-resolution transmission electron microscopy (HRTEM) image and phase analysis of the amorphous powder heated at 800 °C.

(b) Atom probe tomography (APT) analysis of the distribution of W, Co, and C elements in the sample heated at 900 °C.

(c) Phase configuration of the localized region determined by the composition analysis in (b).

 

 

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 4

 

Figure 3: Observation of WC crystal nucleation and growth from the amorphous matrix on typical characteristic crystal planes:

(a-c) Formation and growth characteristics of the (110) crystal plane of WC, corresponding to the heating-quenching conditions at 750 °C, 800 °C, and 850 °C, respectively.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 5

 

Figure 4: Characteristics of grain boundaries and phase boundaries in the sample heated and quenched at 850 °C:

(a) Co3W3C/WC and WC/hcp-Co coherent phase boundaries.

(b) WC/fcc-Co coherent phase boundary.

(c) Coalescence and growth of WC with the same orientation.

(d) Coalescence and growth of WC grains with Σ2 grain boundaries.

 

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 6

 

Figure 5: In the fully densified nano carbide sintered at 1150 °C, containing only WC and Co phases, examples of coherent interfaces are shown:

(a) WC/fcc-Co phase boundary.

(b) WC/hcp-Co phase boundary.

 

Wniosek

The nano carbide prepared in this study exhibits both high hardness (1775±23 kgf/mm2) and high fracture toughness (15.20±0.13 MPa·m^1/2), achieving a comprehensive mechanical performance at the forefront of similar materials in the literature. The significant increase in the proportion of special coherent interfaces in the nanocrystalline carbide, prepared through the crystallization and in-situ reaction of amorphous powder mixture and subsequent sintering densification, promotes the transfer of stress across phase boundaries between the hard phase and tough metallic phase, ensuring continuity in the deformation of the metallic phase and ceramic phase. Consequently, the interfaces in the carbide prepared by this method allow for uniform strain distribution from the metallic to the ceramic phase, avoiding stress concentration. As a result, the material exhibits not only high hardness due to nanoscaling but also significantly improved fracture toughness, thanks to the presence of a high proportion of special coherent interfaces.

 

nano carbide

Figure 6: Microstructure of the prepared nanocrystalline carbide and the continuous deformation mechanism of the metallic phase and ceramic phase at coherent interfaces:

(a) Morphology of WC and Co grains in the material after compression.

(b) Dislocations crossing through the semi-coherent WC/Co phase boundary within Co and WC grains.

(c) Schematic illustration of the dislocation motion between adjacent phases and continuous deformation across the WC/Co phase boundary.

(d) Deformation incompatibility and discontinuity at the incoherent WC/Co phase boundary.

 

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 7

 

 

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 日本一区二区三区视频高清-国产麻无矿码直接观看-国产精品久久久久久无-日韩精品不卡在线视频| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 91精品18国产在线观看-午夜福利原创精品视频-欧美日韩在线亚洲另类-欧美日韩亚洲国产综合在线| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 偷拍日韩女生厕所尿尿-水蜜桃一区二区三区四区-亚洲成人色黄网站久久-久久久国产综合午夜精品| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 亚洲av午夜福利精品一区二区-久久精品国产亚洲熟女-亚洲综合五月婷婷六月丁香-久久国内精品自在自线91| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 久久国产精品一品二品-国产二区中文字幕在线观看-极品性感尤物少妇粉嫩逼-亚洲成人av男人的天堂网| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| av资源视频在线观看-最新福利一区二区三区-极品白嫩粉嫩美女国产-久久精品国产亚洲av麻豆软| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区|