色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

carbide?combines the excellent properties of hard phase and binding phase, thus possessing a series of advantages. It has high hardness (80-94 HRA) and wear resistance, especially maintaining high hardness and strength at higher temperatures. At 600°C, its hardness exceeds the room temperature hardness of high-speed steel, and at 1,000°C, its hardness surpasses the room temperature hardness of carbon steel, while the strength can still be maintained around 300 MPa. It has a high elastic modulus, typically ranging from 400 to 700 MPa. carbide?has a high compressive strength, capable of withstanding heavy loads and maintaining its shape. It also has a low coefficient of thermal expansion, generally 50% of that of steel. Moreover, it exhibits good chemical stability and superior oxidation and corrosion resistance compared to steel. carbide?has become an indispensable material for tooling and structural applications in almost all industrial sectors and emerging technological fields.

How does deep cryogenic treatment on carbide been carried? 2

What is heat treatment?

Heat treatment is an important method for improving the structural properties of materials. Deep cryogenic treatment, as an extension and advancement of traditional heat treatment processes, has been widely applied in the field of materials heat treatment since the mid-20th century. For conventional steel materials, deep cryogenic treatment can transform residual austenite, enhancing the hardness of the workpiece and stabilizing its dimensions. It can precipitate ultra-fine carbides, improving the wear resistance of the workpiece. It can refine the grain structure, enhancing the impact toughness of tooling and molds. It can also improve the corrosion resistance of martensitic stainless steel and enhance the polishing performance of the workpiece. With the further development and maturity of liquid nitrogen cooling technology and insulation techniques, deep cryogenic treatment of carbide has also attracted the attention of industrial enterprises both domestically and internationally.

Current Status of Deep Cryogenic Treatment Process

Deep cryogenic treatment typically involves cooling the workpiece using liquid nitrogen, which can bring the temperature below -190°C. The microstructure of the treated material undergoes changes in a low-temperature environment, resulting in improved properties. Deep cryogenic treatment was initially proposed by the Soviets in 1939, but it wasn’t until the 1960s that the United States industrialized the technology and started applying it primarily in the aerospace field. In the 1970s, its application expanded to the mechanical manufacturing sector.

Cryogenic treatment process methods

There are two different methods based on the cooling approach: liquid-based and gas-based methods. The liquid-based method involves immersing the material or workpiece directly into liquid nitrogen, rapidly cooling it to the temperature of liquid nitrogen, and then maintaining it at this temperature for a certain period before raising the temperature to a desired level. This method has difficulties in controlling the cooling and heating rates, and it is believed to potentially cause damage to the workpiece due to thermal shocks. The equipment used for liquid-based deep cryogenic treatment is relatively simple, such as liquid nitrogen tanks.

On the other hand, the gas-based method utilizes the latent heat of vaporization of liquid nitrogen (approximately 199.54 kJ/kg) and the heat absorption of low-temperature nitrogen gas to achieve cooling. This method can reach a deep cryogenic temperature of -190°C. It involves bringing the workpiece into contact with low-temperature nitrogen gas, which then circulates through convection heat transfer. The nitrogen gas is vaporized after being sprayed through a nozzle inside a deep cryogenic chamber, utilizing the latent heat of vaporization and heat absorption of low-temperature nitrogen gas to cool the workpiece. The cooling rate can be controlled by adjusting the input of liquid nitrogen, allowing for automatic and precise control of the deep cryogenic treatment temperature. This method imposes less thermal shock and reduces the likelihood of cracking. Currently, the gas-based method is widely accepted by researchers in the field and its cooling equipment mainly consists of temperature-controlled programmable deep cryogenic chambers.

Deep cryogenic treatment can significantly improve the service life, wear resistance, and dimensional stability of materials such as ferrous metals, non-ferrous metals, and metal alloys. It offers considerable economic benefits and market prospects.

How does deep cryogenic treatment on carbide been carried? 3

The development history of deep cryogenic technology

The application of deep cryogenic technology to carbide?was first reported in the 1980s and 1990s. In 1981, Japan’s “Mechanical Technology” and in 1992, the US’s “Modern Machine Shop” reported significant improvements in performance after deep cryogenic treatment of carbide. Since the 1970s, foreign research on deep cryogenic treatment has been highly productive, with countries such as the former Soviet Union, the United States, and Japan successfully utilizing deep cryogenic treatment to enhance the service life, wear resistance, and dimensional stability of tooling and workpieces. The practical application of deep cryogenic treatment by a US tooling company demonstrated that the service life of treated carbide?blades increased by 2 to 8 times, while the refurbishment cycle of carbide?wire drawing dies extended from a few weeks to several months.

In the 1990s, research on deep cryogenic technology for carbide?was initiated in China, achieving certain research results. However, overall, there has been relatively limited and fragmented research on deep cryogenic treatment for carbide. The conclusions obtained from existing research are also inconsistent, indicating the need for further in-depth exploration by researchers. Based on existing research data, it is evident that deep cryogenic treatment primarily improves the wear resistance and service life of carbide, with less noticeable effects on their physical properties.

W jaki sposób przeprowadzono g??bok? obróbk? kriogeniczn? w?glika? 4

The strengthening mechanisms of deep cryogenic treatment

Phase transformation strengthening

carbide contain two crystal structures of cobalt (Co): face-centered cubic (α-phase) and hexagonal close-packed (ε-phase). The ε-phase has a smaller friction coefficient and better wear resistance compared to the α-phase. At temperatures above 417°C, the α-phase has lower free energy, so Co exists in the α-phase form. Below 417°C, the ε-phase has lower free energy, and the high-temperature stable α-phase transforms into the energetically favored ε-phase. However, due to the presence of WC particles and solute atoms in the α-phase, there are significant constraints on the phase transformation, making the transformation from α-phase to ε-phase more difficult. Deep cryogenic treatment increases the free energy difference between the α and ε phases, enhancing the phase transformation driving force and increasing the amount of ε-phase transformation. Deep cryogenic treatment causes some atoms dissolved in Co to precipitate as compounds due to decreased solubility, increasing the hard phase in the Co matrix, hindering dislocation movement, and providing strengthening through the second-phase particle effect.

Surface residual stress strengthening

Studies have shown that deep cryogenic treatment increases the residual compressive stress in the surface layer. Many researchers believe that the presence of a certain level of residual compressive stress in the surface layer significantly improves the service life of carbide. During the cooling process after sintering, the binder phase Co experiences tensile stress, while the WC particles experience compressive stress. Tensile stress can cause damage to the Co binder. Therefore, some researchers believe that the increase in surface compressive stress caused by deep cryogenic treatment can alleviate or partially offset the tensile stress generated during the cooling process after sintering in the binder phase, and even adjust it to compressive stress, reducing the formation of microcracks.

Inne mechanizmy wzmacniaj?ce

It is believed that after deep cryogenic treatment, the formation of η-phase particles in the matrix, along with the WC particles, makes the matrix denser and more robust. The formation of η-phase also consumes the Co in the matrix. The decrease in Co content in the binder phase increases the overall thermal conductivity of the material. The growth of carbideparticle size and adjacency also enhances the thermal conductivity of the matrix. The increased thermal conductivity allows for faster heat dissipation at the cutting edge of the tooling, improving wear resistance and high-temperature hardness. Additionally, the contraction and densification of Co during deep cryogenic treatment strengthen the Co’s grip on the WC particles. Physicists believe that deep cryogenic treatment alters the atomic and molecular structure of the metal, leading to improved properties.

Overall, deep cryogenic treatment enhances the wear resistance and service life of carbide?primarily by the phase transformation strengthening and surface residual stress strengthening mechanisms, while the impact on physical properties is less significant.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 国产一区二区三区视频网站-日韩av影片免费在线观看-日韩av有码免费在线观看-制服丝袜天堂网在线观看| 九九热在线精品视频免费-日韩高清免费在线视频-熟女快要高潮了在线观看-亚洲午夜福利视频一级| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 午夜性福福利视频一区二区三区-午夜福利在线看片在线-欧洲内射免费人文艺术-亚洲天堂成人av在线| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 国产精品毛片二区视频播-尤物视频在线看免费观看-亚洲中文字幕亚洲中文字幕-日本黄色成人福利网站| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 在线观看91精品国产性-国产中文字幕精品免费-免费日韩毛片在线观看-精品人妻暴躁一区二区三区| 99久久免费精品老色-白色白色在线观看视频-91麻豆精品在线播放-日本人妻少妇中文字幕| 日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 日本av自拍偷拍视频-日韩精品人妻一区二区三区-看片福利国产午夜三级看片-在线观看视频最新信息好幫手| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站|