色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Metalurgia proszków to proces wytwarzania proszku metalu i wykorzystania proszku metalu (lub mieszaniny metalu i niemetalu) jako surowca do otrzymania cz??ci i produktów poprzez formowanie i spiekanie. Jako g?ówny surowiec przemys?owy, proszek metalowy jest szeroko stosowany w maszynach, metalurgii, przemy?le chemicznym i materia?ach lotniczych. Proszek metalowy jest podstawowym surowcem przemys?u metalurgii proszków. Jej wydajno?? i jako?? determinuj? rozwój przemys?u metalurgii proszków.

Metal powder is usually an aggregate of metal particles less than 1mm. There is no uniform provision for the division of granularity interval. The common classification method is as follows: the particles with a particle size of 1000 ~ 50 μ m are conventional powders; 50 ~ 10 μ m fine powder; 10 ~ 0.5 μ m is called very fine powder< 0.5 μ m is called ultrafine powder; 0.1 ~ 100nm is called nano powder. Each powder particle may be one crystal or composed of many crystals, depending on the particle size and preparation method.

2. Preparation method of metal powder

At present, there are dozens of methods for industrial production of powder, but according to the substantive analysis of the production process, it is mainly divided into two categories: mechanical method and physicochemical method. It can be obtained not only from the direct refinement of solid, liquid and gaseous metals, but also from the reduction, pyrolysis and electrolytic transformation of metal compounds in different states. Carbides, nitrides, borides and silicides of refractory metals can generally be prepared directly by chemical combination or reduction chemical combination. Due to different preparation methods, the shape, structure and particle size of the same powder are often very different.

The choice of metal powder production method depends on raw materials, powder type, performance requirements of powder materials and powder production efficiency. With the more and more extensive application of powder metallurgy products, the requirements for the size, shape and properties of powder particles are higher and higher. Therefore, the powder preparation technology is also developing and innovating to meet the requirements of particle size and properties.

2.1 mechanical physical method

Mechanical method is a processing method that breaks metal into required particle size powder with the help of external mechanical force. The chemical composition of the material is basically unchanged during the preparation process. At present, the commonly used methods are ball milling and grinding, which have the advantages of simple process and large output. It can prepare some ultra-fine powders of high melting point metals and alloys that are difficult to obtain by conventional methods.

2.1.1 ball milling method

Mechanism: ball milling method is mainly divided into rolling ball method and vibration ball milling method. This method makes use of the mechanism that metal particles are broken and refined due to strain at different strain rates.

Application: this method is mainly applicable to the preparation of sb, Cr, Mn, Fe Cr alloy and other powders.

Advantages and disadvantages: it has the advantages of continuous operation and high production efficiency. It is suitable for dry grinding and wet grinding. It can prepare the powder of a variety of metals and alloys. The disadvantage is that the selectivity of materials is not strong, and it is difficult to grade in the process of powder preparation.

How to "Make" Metal Micro Powder? 2

How to "Make" Metal Micro Powder? 3
Fig. 1 TEM photos of antimony powder samples obtained by ball milling for 12h (a), 18h (b) and 24h (c) at 150r / min

2.1.2 grinding method

Mechanism: the grinding method is to spray the compressed gas into the grinding area after passing through a special nozzle, so as to drive the materials in the grinding area to collide with each other and rub into powder; After the air flow expands, it enters the classification area with the rise of materials, and the materials reaching the particle size are sorted out by the vortex classifier. The remaining coarse powder returns to the grinding area for grinding until the required particle size is separated.

Application: it is widely used in ultra-fine grinding of non-metallic, chemical raw materials, pigments, abrasives, health drugs and other industries.

Advantages and disadvantages: because the grinding method adopts dry production, the dehydration and drying of materials are omitted; The product has high purity, high activity, good dispersion, fine particle size and narrow distribution, and the particle surface is smooth. However, the grinding method also has some disadvantages, such as high equipment manufacturing cost, continuous inert gas or nitrogen must be used as compressed gas source in the production process of metal powder, large gas consumption, which is only suitable for crushing and pulverizing brittle metals and alloys.

2.1.3 atomization method

Mechanism: atomization method generally uses high-pressure gas, high-pressure liquid or high-speed rotating blades to break the molten metal or alloy at high temperature and high pressure into fine droplets, and then condense in the collector to obtain ultra-fine metal powder. There is no chemical change in this process. Atomization is one of the main methods to produce metal and alloy powder. There are many atomization methods, such as double flow atomization, centrifugal atomization, multi-stage atomization, ultrasonic atomization technology, tight coupling atomization technology, high-pressure gas atomization, laminar flow atomization, ultrasonic tight coupling atomization and hot gas atomization.

Application: atomization method is usually used in the production of metal powders such as Fe, Sn, Zn, Pb and Cu, as well as the production of alloy powders such as bronze, brass, carbon steel and alloy steel. The atomization method meets the special requirements of metal powder for 3D printing consumables. Figure 3 shows the microstructure of stainless steel powder from a German manufacturer.

Advantages and disadvantages: atomized powder has the advantages of high sphericity, controllable powder particle size, low oxygen content, low production cost and adaptability to the production of various metal powders. It has become the main development direction of high-performance and special alloy powder preparation technology. However, atomization method has the disadvantages of low production efficiency, low yield of ultra-fine powder and relatively large energy consumption.How to "Make" Metal Micro Powder? 4

How to "Make" Metal Micro Powder? 5


Fig. 2 microstructure of 3D printed stainless steel powder from a German manufacturer

2.2 physical chemical method

Physicochemical method refers to the production method of ultrafine powder by changing the chemical composition or agglomeration state of raw materials in the process of powder preparation. According to different chemical principles, it can be divided into reduction method, electrolysis method and chemical replacement method.

2.2.1 reduction method

Mechanism: reduction method is a method of preparing metal or alloy powder by reducing metal oxides or metal salts with reducing agent under certain conditions. It is one of the most widely used powder making methods in production. Common reducing agents include gas reducing agents (such as hydrogen, decomposed ammonia, converted natural gas, etc.), solid carbon reducing agents (such as charcoal, coke, anthracite, etc.) and metal reducing agents (such as calcium, magnesium, sodium, etc.). The hydrogenation dehydrogenation method with hydrogen as the reaction medium is the most representative preparation method. It uses the characteristics of easy hydrogenation of raw metal to hydrogenate the metal with hydrogen at a certain temperature to generate metal hydride, and then breaks the obtained metal hydride into powder with desired particle size by mechanical method, Then, the hydrogen in the crushed metal hydride powder is removed under vacuum to obtain the metal powder.

Application: mainly used in the preparation of metal (alloy) powders such as Ti, Fe, W, Mo, Nb and W-Re. For example, titanium (powder) begins to react violently with hydrogen at a certain temperature. When the hydrogen content is greater than 2.3%, the hydride is loose and easy to be crushed into fine particles of titanium hydride powder. Titanium powder can be obtained by decomposing it at a temperature of about 700 ℃ and removing most of the hydrogen dissolved in the titanium powder.

Advantages and disadvantages: the advantages are simple operation, easy control of process parameters, high production efficiency and low cost, which is suitable for industrial production; The disadvantage is that it is only applicable to metal materials that are easy to react with hydrogen and become brittle and fragile after hydrogen absorption.

2.2.2 electrolytic method

Mechanism: electrolysis is a method to deposit and precipitate metal powder at the cathode by electrolysis of molten salt or salt aqueous solution.

Application: electrolytic aqueous solution can produce metal (alloy) powders such as Cu, Ni, Fe, Ag, Sn and Fe Ni, and electrolytic molten salt can produce metal powders such as Zr, Ta, Ti and Nb.

Advantages and disadvantages: the advantage is that the purity of the prepared metal powder is high, and the purity of the general elemental powder can reach more than 99.7%; In addition, the electrolysis method can well control the particle size of the powder and produce ultra-fine powder. However, the power consumption of electrolytic pulverization is large and the pulverization cost is high.How to "Make" Metal Micro Powder? 6
Fig. 4 device for preparing iron powder by ultrasonic electrolysis

2.2.3 hydroxyl method

Mechanism: some metals (iron, nickel, etc.) and carbon monoxide are synthesized into metal carbonyl compounds, which are reheated and decomposed into metal powder and carbon monoxide.

Appliczation: in industry, it is mainly used to produce fine and ultra-fine powders of nickel and iron, as well as alloy powders such as Fe Ni, Fe Co and Ni Co

Advantages and disadvantages: the powder prepared in this way is very fine and high purity, but the cost is high.

2.2.4 chemical replacement method

Mechanism: chemical replacement method is to replace the less active metal from the metal salt solution with the highly active metal according to the activity of the metal, and further treat and refine the metal (metal powder) obtained by replacement with other methods.

Application: this method is mainly applied to the preparation of inactive metal powders such as Cu, Ag and Au.

The summary of preparation methods of metal powder is shown in Table 1.

3. Summary

With the progress of technology, metal powder has been developed and applied in metallurgy, chemical industry, electronics, magnetic materials, fine ceramics, sensors and so on, showing a good application prospect, and metal powder shows a development trend towards high purity and ultra-fine (nano). Although the preparation methods of ultrafine metal powder are various, and different methods can be selected according to the application and economic and technical requirements, each method has certain limitations and many problems need to be solved and improved. At present, the most widely used methods for preparing metal powder are reduction method, electrolysis method and atomization method; In addition, based on the improvement of the traditional production process, many new production processes and methods have been obtained, such as vacuum evaporation condensation method, ultrasonic atomization method, rotating disc atomization method, double roll and three roll atomization method, multistage atomization method, plasma rotating electrode method, arc method, etc. In the preparation methods of metal powder, although many methods have been applied in practice, there are still two main problems, namely, small scale and high production cost. In order to promote the development and application of metal powder materials, it is necessary to comprehensively utilize different methods, learn from each other, and develop process methods with greater production and lower cost.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 国内精品一区二区三区香蕉-熟女少妇熟女高潮一区二区-亚洲乱码国产乱码精品精男男-国内人妻自拍偷拍视频一区| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 精品国产精品久久一区免费式-男女高清无遮挡免费视频-av男人的天堂一区二区三区-免费观看视频网站97| 午夜精品久久内射电影-亚洲精品自拍视频免费在线-国产免费观看久久黄av麻豆-麻豆国产精品伦理视频| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕| 在线观看91精品国产性-国产中文字幕精品免费-免费日韩毛片在线观看-精品人妻暴躁一区二区三区| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 色婷婷av一区二区三区网-日韩在线不卡一二视频-中文字幕乱码免费在线视频-黄片欧美免费在线观看| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 欧洲亚洲高清另类清纯-国产av一区二区三区av-亚洲精品一区二区三区午夜-国产夫妻自拍3p视频在线| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站|