色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Not only introduction of graphene carbon nanotubes comes, but also new carbon nanomaterials and their auxiliary mechanisms!

Fullerene, carbon nanotubes (CNTs, Carbon Nanotubes) and graphenes (Graphene) are popular carbon nanomaterials in recent years. Currently, five scientists have won the Nobel Prize in this field. Why are carbon nanomaterials widely sought after? For example, bicycles made of carbon fiber-added steel are only a fraction of the weight of ordinary bicycles because of the very small mass of carbon atoms and the chemical bonds between carbon atoms or between carbon atoms and other atoms. Very strong. Therefore, materials mixed with carbon nanometers usually have better mechanical properties and lighter overall weight.

First principles are widely used in physics, chemistry, and materials science. Material design, material prediction, interpretation experiments, etc. are inseparable from the first-principles calculation, because the first principle starts from the Schr?dinger equation and requires very few parameters to calculate most of the material properties of the material very accurately; Further combined with the adiabatic assumption, it can also be used to simulate molecular dynamics. In the field of carbon nanomaterials, first-principles calculations are widely used because the electronic correlation of carbon atoms is very weak, and the first-principles calculations can often make very accurate predictions.

This article will introduce some new types of carbon nanomaterials that differ slightly in the way carbon atoms are combined and arranged in well-known fullerenes, carbon nanotubes, and graphene. These subtle differences can be reflected in the final material properties but can vary greatly. A small difference in the arrangement of carbon atoms can translate into large differences in material properties, which is where carbon nanomaterials attract many materials scientists, physicists, and chemists.

1.Hybridization and dimension

There are two main ways to hybridize carbon atoms to carbon nanomaterials: sp2 or sp3. In the sp2 hybrid mode, each carbon atom forms three molecular orbitals uniformly distributed in a plane at an angle of 120 degrees, and an out-of-plane p-orbit, commonly known as pz orbital; the most typical carbon nanomaterials It is a famous graphene. In the sp3 hybrid mode, each carbon atom forms four molecular orbitals that are evenly distributed in space, roughly forming the shape of a regular tetrahedron from the body to the four vertices. A typical solid material represents a diamond, but A typical representative of the world of nanomaterials is Adamantane. Adamantane is a representative of a whole family of materials, and a molecule contains a core of the diamond structure. If it contains multiple cores of diamond structure, then this family of materials will become Diamondoid. Figure 1: Typical carbon nanomaterials classified according to hybridization (sp2, first row; or sp3, second row) and material dimensions.

Figure 1

The above is just hybridization, or rather, a mainstream choice that a single carbon atom can make when forming a nanomaterial. When many carbon atoms are combined, in addition to hybridization, they can choose to expand in any direction. Is it a zero-dimensional material or a high-latitude material? The above chart 1 lists various representative materials according to hybridization and dimension.

One-dimensional materials in sp3 hybrid mode lack a typical. Readers familiar with relevant research may think of Polyethylene, but in terms of individual molecules, polyethylene molecules lack some long-range configuration rules, or long-range order, and lack the cravings usually in carbon nanomaterials. Mechanical strength.

2.carbon nanowires

Looking at the material below, is it a bit interesting? Is it solid or macromolecule?

carbon nanowires

This new type of carbon nanomaterial is both a sp3 hybrid of carbon atoms and a one-dimensional composition of carbon atoms. At the same time, their cross sections are not like a traditional linear organic molecule, but have multiple chemical bonds. Pass through the cross section. This means that these materials are close to diamond insulators in terms of electronic properties. They are far superior in mechanical properties to traditional linear organic molecules, and their mechanical strength is close to that of carbon nanotubes or graphene. Theoretical calculations do confirm these [1], they are called carbon nanowires, or diamond nanothreads.

Is this new material with a strange shape just a theoretical expectation, or can it be actually prepared? It seems that such materials need to start from the synthesis of small organic molecules, after a small to large process, but experimentally [2] is through a process from large to small, starting from the solid state of benzene, after 25GPa high pressure The role of the original sp2 hybrid chemical bond becomes a sp3 hybrid chemical bond under high pressure, thereby transforming the three-dimensional molecular crystal into a one-dimensional carbon nanomaterial.

Long-range ordered one-dimensional nanowires are shown in the example of Figure 2; unordered structures may often be obtained in actual experiments. This figure shows a disordered structure and the results of scanning tunneling microscopy of carbon nanowire crystals obtained in experiments.Long-range ordered one-dimensional nanowires

3.Applying first-principles calculations

First-principles calculations perform well in predicting the properties of materials. Combining experimental results often leads to more in-depth perspectives on the interpretation of experimental results. In the synthesis of diamond carbon nanowires, due to the harsh experimental conditions, the high pressure of 25GPa needs to be realized in a very small diamond anvil cell (DAC), so the experimental synthesis of materials lacks long-range order, experimental results At first glance, there is a lot of disorder interference. The theoretical calculations can help us distinguish whether the composition contains the new materials we expect.

In theory, we have become a carbon nanowire structure. After adding a certain disorder by introducing the Stone-Wales chemical bond rotation, we can use the theoretical calculation to do the atomic position relaxation and then obtain the optimal structure with the lowest energy. Accurate theoretical calculations can give the distance between atoms in a material, or calculate the radial distribution function in a material. Comparing the theoretical results with the experimental results in Figure 4. It not only confirms that the experimental composition is in agreement with the theoretical structure, but also discerns which atomic structures correspond to the peak resolution of the experimental results.

Figure 4. Comparison of the radial distribution function (RDF) of experimentally synthesized nanowires with the simulated radial distribution function of theoretically generated carbon nanowire structures.Figure 4. Comparison of the radial distribution function

The first principle calculation gives the optical properties of the material. Raman spectroscopy is often a reliable means of characterizing experimental compositions because it does not have to destroy the experimental composition, and spectral peaks can tell us what molecular vibrational modes have Raman activity. One method of calculating the Raman spectrum by density functional theory is to first calculate the dielectric constant of the molecule, and then perform a small displacement of the atom position along the eigenmode of the molecular vibration to calculate the change of the dielectric constant. With the advanced computing power of modern computers, we can now easily calculate the Raman activity of a molecule to determine which structural units are present in the experimental composition. Figure 5 shows a characteristic structural unit included in the synthesis results of carbon nanowires by calculation and analysis of Raman spectroscopy.

Figure 5. Comparison of experimental Raman spectra of carbon nanowires with theory.figure 5

4. Functionalization

An important feature of carbon nanomaterials is the ability to add various functional groups to them. As long as some small organic molecules are replaced in the preparation stage of the synthetic preparation. In the carbon nanowire material, a simple method involves replacing the hydrogen atom (H) in the reactant with a chlorine atom (Cl), or replacing the carbon atom therein with a nitrogen atom (N) and a boron atom (B). It can be functionalized to change its electronic properties, phonon properties, thermal properties or mechanical properties. Figure 6 shows several typical nanowire structures formed by replacing hydrocarbon groups with nitrogen atoms [4].

The study of replacing benzene with an initial reactant containing a nitrogen atom to synthesize nanowires is published in the article [3]. This replacement is a complete replacement instead of doping, using pyridine (pyridine, C5NH5) instead of the benzene ring to participate in the reaction, the reaction process is still similar to the use of high pressure diamond ballast, the sp2 hybrid carbon is converted into sp3 hybrid carbon And complete the transformation of small molecules into one-dimensional materials.

Using the principle of first principles, we can study by two methods, in which the carbon nanowire material of that structure is synthesized. One is to compare the characterization properties of all candidate structures with experiments, such as Raman spectroscopy, XRD, and so on. The other is naturally sorted by their energy. In calculating the energy of carbon nanowires, their molecular structure and periodicity must be optimized first. However, this one-dimensional material has a characteristic that they have a helical structure, which creates some difficulties in calculation.

If you replace the macromolecules that are truncated at both ends, the energy calculation must be inaccurate; if you use periodic boundary conditions, how do you determine the helix angle? A feasible trick is to select several helix angles for calculation [2]. Each angle is different, which means that the length of a structural repeat period is different along the one-dimensional structure. After calculating a number of different helix angles, the average energy per structural unit (or average per atom) is obtained, and a simple quadratic regression fit is performed on the helix angle. The implicit assumption of quadratic regression fitting is that the effect between two adjacent structural elements is approximately spring-like. Although this is not a completely true hypothesis, it can still capture the main force between adjacent units, because in carbon nanomaterials, covalent bond forces between adjacent atoms and adjacent structural units are used. The Hooke’s law of the spring is approximate.

Figure 6. Four typical diamond carbon nanowires decorated with nitrogen atoms from the literature[4]

Figure 6. Four typical diamond carbon nanowires decorated with nitrogen atoms from the literature

5.Mechanical strength

Carbon nanomaterials have a lot of wonderful electrical properties, but now they are widely used in their mechanical lightness: light atoms, strong bonding. Carbon nanowires have the basic unit of diamonds. Will they also have enough strength? Simply put, yes. As shown in Figure 7, the calculations show that the carbon nanowires have a Young’s modulus between 800 and 930 GPa, which is comparable to natural diamonds (1220 GPa). Of course, the mechanical strength of this one-dimensional material is directional. This is both a disadvantage and an advantage: this material concentrates all mechanical strengths in one direction. Some even imagine that this carbon nanowire can be used to make a cable for a space elevator.

Figure 7. Young’s modulus of three different types of diamond carbon nanowires from reference [5].Figure 7. Young's modulus of three different types of diamond carbon nanowires from reference

6.Conclusion

Diamond carbon nanowires have recently joined the large family of carbon nanomaterials with a strict one-dimensional structure and high mechanical strength. In the research process, with the help of powerful computing power, through the first-principles calculation, the possible carbon nanowire atomic molecular structure can be studied, and the interpretation of experimental results can be assisted, and the experimental results can be analyzed in depth. Carbon nanowires, as well as many other interesting new features of carbon nanostructures, are waiting for more theoretical calculations and experimental verification to explore.

References

1.Fitzgibbons, T.C.; Guthrie, M.; Xu, E.-s.; Crespi, V.H.; Davidowski, S.K.; Cody, G.D.; Alem, N.; Badding, J.V. Mater. 2014, 14, 43 – 47

2.Xu, E.-s.; Lammert, P.E.; Crespi, V.H. Nano Lett. 2015, 15, 5124 – 5130

3.Li, X.; Wang, T.; Duan, P.; Baldini, M.; Huang, H.-T.; Chen, B.; Juhl, S.J.; Koeplinger, D.; Crespi, V.H.; Schmidt-Rohr, K.; Hoffmann, R.; Alem, N.; Guthrie, M.; Zhang, X.; Badding, J.V. Am. Chem. Soc. 2018, 140, 4969 – 4972

4.Chen, B.; Wang, T.; Crespi, V.H.; Badding, J.V.; Hoffmann, R. Chem. Theory Comput. 2018, 14, 1131 – 1140

5.Zhan, H.; Zhang, G.; Tan, V. B. C.; Cheng, Y.; Bell, J.M.; Zhang, Y.-W.; Gu, Y. Nanoscale 2016, 8, 11177 – 11184

 

Leave a Reply

Your email address will not be published. Required fields are marked *

91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 久久精品蜜桃一区二区三区-久久99亚洲精品久久-激情文化变态另类快播-国产成人免费永久在线平台| 超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 国产激情在线观看视频-久久久精品国产视频在线-亚洲国产成人精品在线-亚洲乱码国产乱码精品视频| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 青草黄色成人中文视频-国产剧情av在线大学生-日韩av在线一卡二卡三卡-国产成人午夜福利影院| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 日韩成av在线免费观看-中文字幕亚洲第一精品-亚洲欧美日韩国产在线-国产精品国精品国产免费| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 日本免费久久精品视频-毛很浓密很多黑毛熟女-97这里只有精品在线-亚洲乱码国产乱码精品精| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 免费蜜臀av一区二区三区人妻-亚洲熟女少妇精品久久-国产精品毛片免费观看-亚洲精品国产二区中文字幕| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁|