色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Analysis of workpiece situation

The object of machining is the laptop shell, and the material is magnesium alloy ME20. Due to the complex structure and high dimensional accuracy requirements of this component, it is formed using the method of milling the entire magnesium alloy sheet. Magnesium alloy machining differs significantly from traditional aluminum alloy machining in aspects such as tool selection, cutting parameter selection, cutting scheme selection, cutting fluid selection, corrosion prevention measures, and chip disposal.

 

The choice of cutting tools

Magnesium alloy has excellent thermal conductivity, a soft material, and low cutting forces, resulting in rapid heat dissipation during the machining process, minimal chip adhesion, and a consequently long tool life. However, tools used for magnesium alloy machining need to maintain a sharp cutting edge because tools with significant edge wear can increase friction during the cutting process. This can lead to a substantial rise in cutting temperature, causing magnesium chips to ignite or even burn, thereby increasing safety risks in the cutting process. Therefore, magnesium alloy machining generally requires the use of new hard alloy tools and prohibits the mixed use of old tools used for other materials.

The general design principles for tools used in machining steel and aluminum also apply to tools used for machining magnesium alloys. Due to the low cutting resistance and relatively low heat capacity of magnesium alloys, the number of teeth on milling cutters for magnesium alloy machining is typically higher than for other metals. Reducing the number of teeth can increase chip space and feed volume, thereby reducing frictional heating, increasing chip clearance, lowering distortion of crushed chips, reducing power consumption, and minimizing heat generation. In our company, when machining magnesium alloys, three-flute hard alloy end mills are generally preferred.

In special cases, such as when the length or diameter specifications of three-flute tools are inadequate, four-flute hard alloy end mills can also be used.

Magnesium Alloy

Selection of cutting fluid

Magnesium alloy, being a soft and easily machinable material, can achieve extremely smooth machining surfaces whether high or low speeds are used, with or without cutting fluid. Dry machining without cutting fluid can reduce processing costs and facilitate the collection and transportation of waste chips. Therefore, many references recommend dry machining.

However, there is a fire risk associated with dry machining when high speeds and fine chips are involved. This necessitates CNC operators to continuously observe the machining process and be ready to extinguish any fires promptly in case of ignition. While this approach poses an unquantifiable risk, it limits operators from adopting a one-person, multiple-machine work mode, which may not be cost-effective in terms of overall processing costs and efficiency.

In addition, magnesium alloy tends to expand when heated. According to data, the linear expansion coefficient of magnesium alloy in the temperature range of 20 to 200°C is between 26.6 and 27.4 μm/(m-°C) (depending on alloy composition). Taking a length dimension of 200mm as an example, a temperature increase of 10°C during the machining process can result in a machining error ranging from 0.0532 to 0.0548mm. It is evident that without cutting fluid for cooling in dry cutting, the magnesium alloy part will quickly expand due to the rapid temperature rise, thereby affecting machining accuracy. Since the laptop shell demands high dimensional accuracy, such temperature effects cannot be ignored.

Considering these two factors, the CNC machining of magnesium alloy in this case adopts “wet machining” with the use of cutting fluid.

Meetyou’s?Processing Recommendations for Magnesium Alloy Laptop Casings 2

Selection of the cutting parameters

The cutting parameters for CNC milling include spindle speed, feed rate, tool cutting depth, and tool cutting width.

We have chosen a domestically produced machine for machining magnesium alloy. The theoretical maximum spindle speed of this machine can reach 8000 r/min, with a maximum feed rate of 15 m/min and machining accuracy of 0.01 mm. Sustaining the machine at the highest speed for extended periods is detrimental to its health. Excessive feed rates, especially for small-batch production, may not save much time but significantly increase the risks of quality issues and equipment failures. Therefore, we have opted for a strategy of large cutting depths and small feed rates to determine our cutting parameters.

Based on our company’s extensive CNC machining experience, the cutting parameters of hard alloy end mills vary in spindle speed and feed rate when machining different materials. However, cutting depth and cutting width generally do not change much. For rough machining, a recommended cutting width is 50% to 100% of the tool diameter (D), and the recommended cutting depth is 0.3 to 0.5D. For finishing, a recommended cutting width is 0.1 to 0.5 mm, and the cutting depth is 0.5 to 1D.

In the development of machining strategies, there is not much difference between machining magnesium alloy and common aluminum alloy materials. The only variation is in the finishing allowance, where a minimum allowance of 0.2 mm is recommended to avoid generating overly fine chips and prevent machining ignition.

Magnesium alloy, being soft and easily machinable, may generate significant cutting heat with high spindle speeds and feed rates, leading to ignition. Therefore, taking into account both efficiency and safety, our company has conservatively adopted spindle speeds and feed rates 1.5 to 2 times those used for cutting aluminum alloy.

Meetyou’s?Processing Recommendations for Magnesium Alloy Laptop Casings 3

Anti-corrosion measures in magnesium alloy processing

Generally, magnesium alloys are considered chemically active and prone to corrosion, especially when magnesium alloy parts come into contact with cutting fluid during “wet” machining. However, based on our unit’s processing experience, if effective corrosion prevention measures are adopted within a relatively short processing cycle, it will not lead to severe corrosion affecting structural strength or surface roughness.

We employ the following measures to mitigate corrosion in magnesium alloy machining:

1.Magnesium alloy CNC machining must be continuous, and parts soaked in cutting fluid should not be left on the worktable for an extended period, especially overnight.

2.After completing the machining, magnesium alloy parts should be rinsed in clean water to thoroughly dilute residual cutting fluid.

3.Rinsed magnesium alloy parts should be quickly dried using a high-pressure air gun and then wiped dry with clean cotton cloth (see Figure 3).

4.Finished parts can be temporarily placed in a foam box, avoiding contact with other metals.

5.If parts are left for an extended period or during transit, they should be placed in a dry plastic bag, and the bag opening should be folded to ensure relatively low air circulation inside the bag.

In reality, although these methods are simple and practical, they cannot completely eliminate magnesium alloy corrosion. Even if the part’s surface darkens or develops a small amount of black spots, these can be removed by dry sandblasting. Determining whether the level of corrosion on the magnesium alloy surface is acceptable requires thorough communication with technical personnel involved in the surface treatment stage, and the establishment of corresponding annotations and specifications.

Leave a Reply

Your email address will not be published. Required fields are marked *

国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 九九久久精品国产av-日本高清在线观看一区二区-精品熟女视频一区二区三区-亚洲欧洲成熟熟女妇专区乱| 成a级人在线观看网站免费看-久久久精品国产亚洲av水蜜桃-亚洲第一狼人在线观看-黄色欧美精品一区二区三区| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 最新国产av在线播放-成人av免费观看黄色-中文字幕人妻av一区二区风险-亚洲av午夜精品福少妇喷水| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 最新国产精品欧美日韩-日韩孕妇孕交在线视频-亚洲欧美日韩国产成人在线-欧美老熟妇性视频在线观看| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 成人一区二区三区免费观看-国内久久偷拍精品视频-欧美人与性动α欧美精品z-性感美女勾引男人视频| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 国产欧美日韩一区二区三区88-国产亚洲av嫩草精品影院-成人国产一区二区三区麻豆-在线观看午夜宅男视频| 偷拍日韩女生厕所尿尿-水蜜桃一区二区三区四区-亚洲成人色黄网站久久-久久久国产综合午夜精品|