色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Overview

In recent years, research on coarse grain carbide grades and materials has been advancing in two different directions: ultra-coarse and ultra-fine grains. Ultra-coarse grain cemented carbides have been widely applied in mining rock drilling tools, roll mills, and stamping molds.

Studies have revealed several primary forms of carbide failure during drilling: impact fatigue, abrasive wear, and thermal fatigue. For hard rock formations, such as granite (drilled with impact or rotary impact drills), abrasive wear is relatively lower, and carbide failure is primarily caused by impact and impact fatigue. The compressive strength and bending strength of the carbide are directly related to its impact fatigue resistance; additionally, this resistance is associated with the carbide’s purity, WC grain size, and Co phase’s average free path. Furthermore, the carbide’s impact fatigue resistance is directly related to the impact energy.

Reasons for Issues in Cemented Carbide Rock Drilling

For medium-hard rock formations, such as quartzite (drilled with impact drills), abrasive wear dominates. Abrasive wear generally consists of two aspects: micro-cracks at the contact points of abrasive particles and premature wear of the Co phase. The former primarily occurs on hard and brittle carbides, especially when abrasives have high fracture strength; the latter occurs on softer carbides with higher Co content, particularly when abrasives are very brittle. Figure 1 shows a scanning electron microscope (SEM) image of the wear surface of a GF20D grade drill tooth, produced by Xiamen Jinlu Special Carbide Co., Ltd., after drilling about 500 meters into quartzite. The YG6 grade carbide, composed of 94% WC with a grain size of 2-3 μm and 6% Co, has a hardness of HV30:1430. The image illustrates typical abrasive wear, characterized by premature Co phase wear and cracking and spalling of the WC phase.

For soft rock formations, such as sandstone, thermal fatigue is the primary cause of carbide failure, accompanied by abrasive wear. For ultra-soft rock formations, such as calcite and limestone, thermal fatigue is the main cause of carbide failure. The propagation of cracks and premature wear of the Co phase directly impact the drill tooth’s lifespan. Especially when drilling magnetite, thermal fatigue cracks, also known as creep cracks, dominate. Figure 2 shows a typical undulating cracking morphology of cemented carbide drill teeth formed while drilling magnetite. Figure 3 is an SEM image of a traditional polished cross-section of a carbide drill tooth that drilled about 5 meters into magnetite, composed of 94% WC with a grain size of 5 μm and 6% Co, with a hardness of 1230 HV. The image reveals that the thermal fatigue cracks on the carbide surface have extended into the carbide’s interior.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 1

Figure 1: SEM photo of the wear surface of the quartzite at a depth of about 500 meters on the YG6 drill tips inserted in drill bits

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 2

Figure 2. Typical ups and downs of crack morphology formed when carbide drill teeth drill magnetite

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 3How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 4

Figure 3. The carbide drill teeth drill a conventional polished cross-section of about 5m into the magnetite. The grade consists of 94% WC with a grain size of 5um and 6% Co with a hardness of 1230HV(SEM).

 

Reasons for Developing New Rock Drilling Cemented Carbides

The fundamental reason for developing new rock drilling carbides lies in the continuous advancement of mining and drilling technology both domestically and internationally. As drilling equipment becomes more advanced and drilling efficiency improves, there is a growing use of fully hydraulic, high-power, and high-efficiency rock drilling rigs and rotary-percussion drills. This advancement has raised higher demands for the quality and lifespan of rock drilling cemented carbides. When drilling tools penetrate rock, the pressure rises from 0 to 10 tons within 1/10 of a second, and the temperature increases from 20°C to 1000°C. During impact and rotation, drilling carbides generate extremely high temperatures. Especially when drilling magnetite, rapid formation of thermal cracks, commonly referred to as “snake skin” or “tortoise shell” cracks, occurs.

 

To meet the requirements of modern rock drilling technology, the performance of rock drilling cemented carbides needs to be improved and optimized in several key areas: the thermal conductivity (the ability of the material to conduct heat) should be as high as possible; the thermal expansion coefficient (the linear expansion of the material when heated) should be as low as possible to ensure minimal growth rate of thermal cracks; high-temperature hardness should be further enhanced to guarantee good wear resistance at high temperatures; in addition, the transverse rupture strength (TRS) and fracture toughness (Kic, the material’s ability to resist sudden fractures caused by micro-cracks) should also be improved.

 

Table 1 lists the thermal performance data of pure WC, pure Co, three commonly used WC-Co carbide grades, and three types of rock. These three grades, with varying Co content and WC grain sizes, are suitable for different rock drilling teeth, hot-rolled rolls, and multi-purpose applications.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 5

Directions for Developing New Rock Drilling Cemented Carbides

It is well known that Co has low thermal conductivity and a high thermal expansion coefficient. Therefore, the Co content should be minimized as much as possible. On the other hand, cemented carbides with high Co content exhibit better strength and fracture toughness. From a mechanical perspective, especially when carbide drill bits penetrate rock surfaces at high speeds, the drill bits endure high impact and loads, or mechanical vibrations under hard cutting conditions, necessitating improved strength and fracture toughness in the carbide. Additionally, compared to fine-grained carbides, coarse WC grain sizes contribute to greater strength and fracture toughness of the cemented carbide.

As a result, the preparation of rock drilling cemented carbides tends to use lower cobalt content and increase WC grain size to achieve good mechanical properties and the required high-temperature wear resistance. This approach results in ultra-coarse grain carbides. Traditionally, the production of ultra-coarse grain cemented carbides involves high-temperature reduction of coarse grain tungsten powder followed by high-temperature carburization to produce coarse grain WC powder. This powder is then mixed with Co powder and ball-milled to form a mixture, which is subsequently pressed and sintered to create the cemented carbide. However, coarse grain WC powder produced from tungsten powder via high-temperature carburization generally consists of polycrystalline particles, where each WC particle is composed of multiple WC single crystals.

Figure 4 shows a scanning electron microscope image of coarse grain carbide powder with a Feret diameter of 23.20 μm. The image reveals that each WC particle contains multiple WC single crystals. Although the original powder has a coarse grain size, after grinding, the polycrystalline particles easily break down into fine single crystal particles. Consequently, the ground WC powder has a Feret diameter of only 4.85 μm. Figure 5 shows the metallographic photo of a cobalt-containing carbide with 6% Co produced using conventional carbide production processes. The average grain size of this carbide is approximately 4.0 μm.

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 6

Figure 4: SEM image of coarse grain WC powder with a particle size of 23.20 μm.

coarse grain carbide

Figure 5: Metallographic photo of WC-6% Co alloy produced from coarse grain WC powder with a particle size of 23.20 μm using conventional processing methods.

U.S. Patents 5505902 and 5529804 disclose methods for producing ultra-coarse grain cemented carbides. The methods outlined in these patents involve the dispersion and classification of coarse grain WC powder through jet milling and sieving to remove fine WC particles, selecting only the coarse-grained carbide, and then coating these WC particles with Co. Patent 5505902 utilizes the sol-gel method, where WC, methanol, and triethanolamine are mixed in a reactor. During heating, methanol evaporates, and Co precipitates onto the WC grains, forming a sol-gel.

 

Patent 5529804 employs the polyol method, where Co acetate, water, and WC are mixed and then spray-dried. The mixing process is optimized to prevent the breaking of coarse WC particles. The mixture produced using these patented methods is then subjected to conventional pressing and sintering processes to create cemented carbides with 6% Co and an average grain size of 13-14 μm, with porosity easily controlled between A02 and B02. This new carbide shows better WC matrix adjacency compared to carbides produced by traditional ball milling. Consequently, this new carbide has been successful in specific applications where conventional carbides fall short, such as in hard rock layers like granite and hard sandstone. In these cases, conventional column teeth fail due to Co dissolution at high temperatures, leading to spalling of elongated or hexagonal WC grains, and eventually, complete spalling of the drill bit within minutes, causing rapid crack propagation and subsequent fracture. In contrast, carbides produced with new technology can be used for extended periods in hard rock layers, displaying stable wear resistance without deep cracks. Due to the high adjacency of the WC matrix, the thermal conductivity of the 6% Co carbide with a WC average grain size of 14 μm can reach 134 W/m°C, which is 20% higher than that of coarse-grained carbides with the same Co content produced by traditional methods and comparable to the thermal conductivity of pure WC.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 7

Application Examples of New Ultra-Coarse Grain Cemented Carbide Production Technologies

Two types of impact drilling cemented carbides were simultaneously produced using both traditional and new methods and tested in iron ore. Both samples had a WC average grain size of 8 μm, 6% Co, and 94% WC content.

Sample A: Produced using traditional ball milling, drying, pressing, and sintering processes. This carbide has a wide distribution of crystal sizes.

Sample B: The WC powder was subjected to jet dispersion and classification to remove coarser and finer WC particles, selecting 6.5-9 μm WC powder. The WC grains were pre-coated with 2% Co, and then 4% pure Co was added to achieve a 6% Co content. After wet mixing (without ball milling) to obtain the desired slurry, a thickening agent was added if necessary to prevent coarse grain WC sedimentation. The slurry was dried, shaped, and sintered, resulting in a narrower particle size distribution, with over 95% of the grains ranging from 6.5 to 9 μm. The adjacency of these carbides was measured: Sample A had an adjacency of 0.41, while Sample B had an adjacency of 0.61.

Testing was conducted in magnetite, which is prone to generating high heat and thermal fatigue. After drilling 100 μm, Sample A exhibited thermal cracking. Cross-sectional observation of the used carbide revealed small cracks extending into the carbide, damaging its microstructure and reducing its lifespan. With regrinding after every 100 μm of drilling, the carbide’s drilling lifespan was 530 meters. Sample B showed no or only minimal thermal cracking after drilling 100 meters. Cross-sectional observation showed no internal cracks, only some fractured surface grains. With regrinding after every 200 meters, the average drilling lifespan was 720 meters.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 中文字幕亚洲精品人妻-91九色免费视频网站-黄色av全部在线观看-四虎最新地址在线观看| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 亚洲毛片在线观看视频网站-午夜高清福利在线观看-性生活视频在线免费观看-女人吞精口爆在线视频| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 国产成人自拍视频精品-丝袜美腿亚洲一区二区刘亦菲-91精选国产在线视频-欧洲美熟女乱又伦免费| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 国产喷白浆一区二区三区网站-中文字幕人妻系列av-国产极品尤物自拍露脸-自拍偷区亚洲综合激情| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 日韩精品一区二区三中文字幕-欧美亚洲日本精品一区二区-日韩av亚洲在线观看-亚洲欧美国产日韩激情| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 特大毛片毛片免费视频-成人伊人青草久久综合网-91亚洲蜜桃内射后入在线观看-日韩情色电影中文字幕| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 97视频资源在线观看-国产av天堂久久精品-亚洲av一二三四区又爽又色又爽-悠悠色网视频在线精品| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 中文字幕乱码亚洲精品-亚洲伊人久久大香线蕉-麻豆视传媒视频短免费网站-极品美女被后入干出水视频|