色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

1. ?

Definition: the ability of components or parts to resist damage (fracture) or significant deformation under external force. Key words are extracted, fracture is broken and deformation is significant.

For example, Sun Yue took the iPad as a weight scale, stood up, and the iPad screen cracked, which is not strong enough. For example, many big branches are broken by the wind when watching the sea every summer in Wuhan, which is not strong enough.

Strength is a parameter reflecting the failure of materials such as fracture. Generally, the strength includes tensile strength and compressive strength, which is the amount of material failure when the stress reaches. The unit of strength is generally MPa.

How to Comprehend Strength in Mechanics 2

Damage type

Brittle fracture: a sudden fracture that occurs without significant plastic deformation. For example, the fracture of the cast iron specimen along the cross section in the process of drawing and the fracture of the cast iron specimen along the inclined section in the process of torsion.

Plastic yield: the material produces significant plastic deformation, which makes the component lose working capacity. For example, the low-carbon steel specimen will have significant plastic deformation when it is stretched or twisted.

strength theory

1. Theory of maximum tensile stress:

As long as the maximum tensile stress  at a point in the member reaches the ultimate stress σb under the condition of unidirectional stress, brittle fracture will occur in the material. Therefore, the conditions for brittle fracture of components in complex stress state are as follows:σ1=σb

So the strength condition established by the first strength theory is:σ1≤[σ] 。

2. Maximum tensile strain theory:

As long as the maximum tensile strain ε 1 reaches the limit value ε u under unidirectional stress state, brittle fracture will occur: ε1=σu.

From the generalized Hooke’s Law:ε1=[σ1-u(σ2+σ3)]/E,therefore,σ1-u(σ2+σ3)=σb.

The strength conditions established according to the second strength theory are as follows: σ1-u(σ2+σ3)≤[σ].

3. Maximum shear stress theory:

As long as the maximum shear stress τ Max reaches the ultimate shear stress τ 0 under the state of unidirectional stress, the material will yield failure. τmax=τ0。

According to the stress formula on the inclined section of axial tension.τ0=σs/2(σs——Normal stress on cross section)From the formula: τmax=(σ1-σ3)/2。So the destruction condition is rewritten as σ1-σ3=σs。

According to the third strength theory, the strength condition is:σ1-σ3≤[σ]。

4. Specific energy theory of shape change:

As long as the shape change ratio at a point in the member can reach the limit value under the unidirectional stress state, the material will yield failure.

Therefore, according to the fourth strength theory, the strength conditions are:

sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]。

2、 Stiffness

Definition: refers to the ability of members or parts to resist elastic deformation or displacement under the action of external force, that is, elastic deformation or uniqueness shall not exceed the allowable scope of the project.

Stiffness is a parameter that reflects the relationship between structural deformation and force, that is, the amount of deformation produced by how much force the structure is subjected to. In short, it is a spring, and the stiffness of spring is the tension divided by the elongation. The unit of stiffness is generally N/m。

Stiffness type:

When the applied load is a constant load, it is called static stiffness; when it is an alternating load, it is called dynamic stiffness. Static stiffness mainly includes structural stiffness and contact stiffness. Structural stiffness refers to the stiffness of the member itself, mainly including bending stiffness and torsional stiffness.

1. Bending rigidity: calculated according to the following formula:

How to Comprehend Strength in Mechanics 3

3、 Connection between the two

Based on the above theoretical understanding of strength and rigidity, compared with rigidity, the definition of strength is aimed at the failure under the action of external force, and the failure type is classified as plastic yield and brittle fracture, which is associated with the stress-strain curve in tension. As shown in the figure.

The curve in the figure can be divided into four stages:

1. Elastic deformation stage;

2. Yield stage;

3. Strengthening stage;

4. Local necking stage.

The definition of stiffness is to resist elastic deformation, which is carried out in the first stage. Under elastic action, it meets Hooke’s law. Observe the calculation formula of bending stiffness and torsional stiffness under static load, which is similar to Hooke’s law. It can be inferred that the measurement of stiffness is only carried out in the elastic deformation stage.

How to Comprehend Strength in Mechanics 4

After entering the next stage, the residual strain of the plastic strain fire will not disappear during the tensile process. Under the stress-strain curve, the stress is almost the same, while the strain increases significantly. At this time, the stress is the yield limit. And for the material, it enters into plastic yield

In the failure stage, after the strengthening stage, the strain increases with the increase of stress, and finally reaches the strength limit. It can be seen that the measurement of the strength is after the elastic deformation of the material and before the strength limit.

In conclusion, it can be concluded that both the stiffness and strength are measured at the failure stage of the part, while the stiffness can be measured by stress, and the strength can be measured by deformation. In the process of strain, the stiffness is in the former stage and the strength is in the latter stage. Therefore, in the condition measurement of part failure, as long as the stiffness requirements are met, sufficient stress can be resisted at the stage of elastic deformation, and The strength also meets the requirements of parts under such premise. According to this relationship, there will be all kinds of design in the actual production, such as the shaft in mechanical equipment. Usually, the size of the shaft is determined according to the strength condition first, and then the rigidity is checked according to the rigidity condition. Because of this, the rigidity requirement of precision machinery is very high, and the design of its section size is often controlled by the rigidity condition.

欧美日韩在线视频一区不卡-高清自拍最新国产精品-亚洲自偷精品视频自拍-日韩在线不卡中文字幕| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 国产在线观看av自拍-成人自拍小视频在线看-十八禁网站在线免费观看-丰满的熟妇露脸大屁股| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 日韩亚洲一区二区在线观看-欧美色一区二区三区在线-日韩av黄片在线观看-深夜成人福利在线观看| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 日韩精品一区二区三中文字幕-欧美亚洲日本精品一区二区-日韩av亚洲在线观看-亚洲欧美国产日韩激情| 91九色国产成人久久精品-亚洲av无一区二区三区av中文-最新日本加勒比在线视频-激情综合激情五月婷婷| 午夜av毛片在线观看-青草精品视频在线观看-亚洲av中文字字幕乱码综合-午夜av一区二区三区中文字幕| 亚洲av大片免费在线观看-97夫妻午夜精品在线-丰满人妻熟妇乱又伦精另类视频-国产男女啪啪视频观看| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 一区二区在线观看黑人-久久久精品人妻一区二区三区综合-成人内射国产免费观看-四虎在线免费视频观看| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 四虎最新在线观看视频-水蜜桃一二二视频在线观看免费-一区二区精品在线观看视频-成人高清在线播放视频| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| av资源视频在线观看-最新福利一区二区三区-极品白嫩粉嫩美女国产-久久精品国产亚洲av麻豆软| 精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 日韩亚洲一区二区在线观看-欧美色一区二区三区在线-日韩av黄片在线观看-深夜成人福利在线观看| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产|