色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The reliability of chip breaking in machining has a significant impact on both normal production and operator safety. In cutting operations, fragmented chips can splatter and cause injury, as well as damage the machine tool. On the other hand, long ribbon-like chips can get entangled with the workpiece or the tool, potentially scratching the workpiece, leading to tool breakage, and even compromising worker safety.

For CNC machine tools (machining centers) and other automated machining equipment, the issue of chip breaking becomes even more critical due to the larger number of tools and their close interaction with the tool holder. If even one tool has unreliable chip breaking, it could disrupt the machine’s automatic cycle and, in some cases, halt the entire production line. Therefore, when designing, selecting, or grinding tools, the reliability of chip breaking must be taken into consideration. Specifically for CNC machine tools (machining centers), the following requirements should be met:

  1. Chips must not wrap around the tool, workpiece, or adjacent tools and equipment.
  2. Chips must not splatter to ensure the safety of operators and observers.
  3. During precision machining, chips must not scratch the already processed surfaces of the workpiece, affecting the quality of those surfaces.
  4. Ensuring the intended durability of the tool, avoiding premature wear, and preventing tool breakage as much as possible.
  5. When chips flow out, they should not obstruct the delivery of cutting fluid.
  6. Chips should not damage machine tool guides or other components.How to Carry Out Chip Breaking on Work Piece? 2

Classification of Chip Shapes

The shape of chips produced in machining varies depending on factors such as workpiece material, tool geometry, and cutting parameters. Common chip shapes include ribbon chips, C-shaped chips, fragmented chips, pagoda-shaped curled chips, spring-shaped curled chips, long, tight spiral chips, and spiral chips (see Figure 1).

Ribbon Chips

When machining ductile materials at high speeds, continuous ribbon chips can form easily. These chips can become entangled around the workpiece or tool, potentially scratching the workpiece surface, damaging the cutting edge of the tool, or even causing injury. Thus, it’s generally best to avoid forming ribbon chips. However, there may be situations where ribbon chips are desired to facilitate chip removal, such as when boring blind holes on a vertical boring mill.

C-Shaped Chips

When turning general carbon steel or alloy steel materials and using cutting tools with chip breakers, C-shaped chips can form. C-shaped chips don’t have the disadvantages of ribbon chips. However, most C-shaped chips are prone to impact the back surface of the cutting tool or the workpiece, causing them to break (see Figure 2). The high-frequency breaking and fracturing of chips can affect the smoothness of the cutting process and, subsequently, the surface roughness of the finished part. Therefore, in precision machining, it’s generally not desired to produce C-shaped chips, but instead, longer spiral chips (see Figure 3) are preferred to maintain a smoother cutting process.

Spring-Shaped Curled Chips

When heavy cuts and large feed rates are used to turn steel parts on a heavy-duty lathe, wide and thick chips are produced. Forming C-shaped chips in this scenario can easily damage the cutting edge and even pose an injury risk. To prevent this, the radius of the chip breaker’s groove bottom is increased to create spring-shaped chips (see Figure 4). These chips collide and break on the machining surface, falling under their weight.

Spiral Chips

The formation of long, tight spiral chips is a smoother process, and they are easy to clean up. This chip shape is favored for use on regular lathes.

Pagoda-Shaped Curled Chips

When CNC machining or using automated machinery, it’s preferable to produce this chip shape because it doesn’t wrap around the cutting tool or workpiece, making it easier to clean up.

Fragmented Chips

When turning brittle materials like cast iron, brittle brass, or phosphor bronze, needle-like or fragmented chips can easily form. These chips are prone to splattering and causing injuries, as well as damaging the machine tool. Using chip-breaking methods can turn these chips into short, curled chips.

In conclusion, the desired chip shape in cutting operations varies based on specific conditions. Regardless of the chip shape, it’s essential for chip breaking to be reliable.

How to Carry Out Chip Breaking on Work Piece? 3

Mechanism?of Chip Breakage

Whether metal chips are prone to breaking during metal cutting is directly related to the deformation of chips. To understand the principles of chip breakage, one must first examine the deformation patterns of chips.

During metal cutting, chips undergo significant plastic deformation. This process leads to an increase in chip hardness but a significant decrease in plasticity and toughness. This phenomenon is known as strain hardening. After strain hardening, the chips become hard and brittle, making them prone to breaking when subjected to alternating bending or impact loads.

The degree of plastic deformation that chips undergo affects the extent of their strain hardening and susceptibility to breaking. In cases where high-strength, high-plasticity, and high-toughness materials are being machined, measures must be taken to increase chip deformation, thereby reducing their plasticity and toughness to facilitate chip breaking.

Chip deformation can be divided into two components:

Basic Deformation:?This is the deformation that occurs during the cutting process and is close to the values of basic deformation measured when free-cutting with a flat-fronted tool. The primary factors affecting basic deformation are the tool’s front clearance angle, negative rake angle, and cutting speed. A smaller front clearance angle, wider negative rake, and lower cutting speed result in greater chip deformation, which is favorable for chip breaking. Therefore, reducing the front clearance angle, increasing the negative rake angle, and decreasing the cutting speed can promote chip breaking.

Additional Deformation:?In most cases, basic deformation alone cannot result in chip breaking. Additional deformation is required to harden and break the chips. The simplest method to subject chips to additional deformation is to grind (or press) chip-breaking grooves on the tool’s front surface. When chips flow into these grooves, they experience additional bending and coiling deformation, leading to further hardening and brittleness. This makes the chips easily break upon contact with the workpiece or the tool’s back surface.

????? ? ????? ???? ??? ?????? 4

Common Chip Breaking Methods

Using Chip-Breaking Grooves

Chip-breaking grooves are effective in achieving both basic and additional deformation. The shape, size, and angle of the grooves play a crucial role in chip breaking.

Using Chip Breakers

Chip breakers can be fixed or adjustable and are effective in controlling chip curling and breaking. They are often used on medium and large-sized machine tools.

Using Chip-Breaking Devices

These devices come in mechanical, hydraulic, and electrical forms, are reliable, but typically cost more. They are commonly used in automated production lines.

Using Pre-Grooved Workpiece Surfaces

Grooves are pre-cut on the workpiece surface parallel to its axis. These grooves, which are slightly shallower than the cutting depth, create weaker sections in the chip, facilitating chip breaking. This method can be particularly useful for machining tough materials.

In summary, achieving chip breaking depends on the material and cutting conditions. Various methods, including adjusting tool geometry, modifying cutting parameters, and using chip-breaking devices, can be employed to promote reliable chip breaking. Chip breaking is essential for safety and efficient metal cutting processes.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| 久久只有这里的精品69-亚洲欧洲av黄色大片-人妻少妇被黑人粗大爽-成人性生交大片免费看av| 天堂av免费资源在线观看-青春草在线视频播放免费观看网站-亚洲精品中文字幕久久桃色-亚洲成人有码免费在线| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 国产美女高潮久久精品-国产成人精品十八禁在线播放-成在线人视频免费视频-97超级视频在线观看| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 日韩av二区三区亚洲综合-日韩有码中文字幕国产-国产精品视频一二三四五区-青春草在线视频免费观看| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 欧美精品一区二区三区三州-少妇被五个黑人玩的在线视频-国产亚洲精品a久久7777-亚洲av色香蕉一区二区精品国产| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 2023年久久国产精品-亚洲中文字幕二区在线观看-人人妻人人玩人人澡人九色-午夜精品福利视频网站| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 国产深夜视频在线观看-丰满人妻熟妇乱又乱精品-青草视频在线观看资源-奇米网东京热日本人妻| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 91精品啪在线观看国产91蜜桃-国产国拍亚洲精品av在线-日韩在线亚洲清纯av天堂-久久亚洲国产精品五月天| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 国产一区二区三区四区在线播放-国语精品国内自产视频-可以免费看黄的网久久-久久久亚洲av三吉彩花| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 精品精品国产午夜福利区免费观看-日韩精品一区二区三区2020-一区二区三区精彩视频在线观看-亚洲第一香蕉视频在线| 亚洲av午夜福利精品一区二区-久久精品国产亚洲熟女-亚洲综合五月婷婷六月丁香-久久国内精品自在自线91| 日本人妻中文字幕久久-色老汉免费在线观看一区-成人国产在线观看网站-欧美日韩国产亚洲一区二区三区| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线|