色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

?? ??? ?? ?? ??? ????? ???? ?? ???? ?? ??? ???? ?? ??? ??? ???? ? ?? ??? ???? ????? ?? ???? ?? ??? ?? ??? ??? ??? ????, ?? ???? ??? ??? ?? ??? ? ??? ??? ???? ?????. ?? ??? ?? ?? ???? ??? ?? ??? ?? ??? ???? ??? ??? ??? ??????.

If the machining allowance is too small, it is difficult to eliminate the residual form and position errors and surface defects in the previous process; If the allowance is too large, it will not only increase the workload of machining, but also increase the consumption of materials, tools and energy. What is more serious is that the heat generated by cutting a large amount of machining allowance during the machining process will deform the parts, increase the machining difficulty of the parts and affect the product quality. Therefore, it is necessary to strictly control the machining allowance of the parts.

1. Concept of machining allowance

Machining allowance refers to the thickness of the metal layer cut from the machined surface during machining.

Machining allowance can be divided into process machining allowance and total machining allowance. Process machining allowance refers to the thickness of the metal layer cut off by a surface in a process, which depends on the difference between the dimensions of the adjacent processes before and after the process. Total machining allowance refers to the total thickness of the metal layer removed from a certain surface during the whole machining process of the part from blank to finished product,which is, the difference between the blank size on the same surface and the part size. The total machining allowance is equal to the sum of the machining allowance of each process.Machining allowance in a drawing are shown in Figure 1.

In the figure 1, the minimum machining allowance is the difference between the minimum process size of the previous process and the maximum process size of this process. The maximum machining allowance refers to the difference between the maximum process size of the previous process and the minimum process size of this process.

The variation range of process machining allowance (the difference between the maximum machining amount and the minimum machining allowance) is equal to the sum of the dimensional tolerances of the previous process and the current process. The tolerance zone of process dimension is generally specified in the entry direction of parts. For shaft parts, the basic size is the maximum process size, while for holes, it is the minimum process size.

?? ??? ?? ???? ??? ??? ???? 2

2How does machining allowance affect processing accuracy?

?? ??? ?? ???? ??? ??? ???? ?

2.1 when the machining allowance is excessive

Parts must produce cutting heat in the machining process. Part of these cutting heat is taken away by iron filings and cutting fluid, part is transferred to the tool, and part is transferred to the workpiece, which increases the temperature of the parts. The temperature is closely related to the machining allowance. With large machining allowance, the rough machining time will inevitably increase, and the cutting amount will also be appropriately increased, resulting in the continuous increase of cutting heat and the temperature of parts. The biggest harm caused by the temperature rise of parts is to deform the parts, especially for materials that are sensitive to temperature changes (such as stainless steel), and this thermal deformation runs through the whole processing process, increasing the processing difficulty and affecting the product quality.

For example, when machining slender shaft parts such as screw rods, the degree of freedom in the length direction is limited due to the one-on-one machining method. At this time, if the workpiece temperature is too high, thermal expansion will occur. When the extension in the length direction is blocked, the workpiece will inevitably produce bending deformation under the influence of stress, which will bring great trouble to the later processing. The bending deformation diagram of the workpiece after heating is shown in Figure 2. At this time, if you continue to process, process the protruding part until the finished product. After cooling to normal temperature, the part will produce reverse deformation under the action of stress, causing form and position errors and affecting the quality. The bending deformation diagram of the workpiece after normal temperature is shown in Figure 3. After expansion in the diameter direction, the increased part will be cut off, and cylindricity and dimensional error will occur after the workpiece is cooled. When grinding precision screw, the thermal deformation of workpiece will also cause pitch error.

2.2 what if the maching allowance is too small?

The machining allowance of parts should not be too large but also too small. If the machining allowance is too small, the residual geometric tolerances and surface defects in the previous process cannot be eliminated, thus affecting the product quality. In order to ensure the machining quality of parts, the minimum machining allowance left in each process shall meet the basic requirements of the minimum machining allowance in the previous process. The schematic diagram of the constituent factors of the minimum machining allowance of the inner hole of a part is shown in Figure 4. Figure 4a) shows the parts of the inner hole to be machined. If the axis o1-o1 deviates from the reference axis O-O with position error n when the hole is processed in the previous process, and the cylindricity error P (such as taper, ellipse, etc.) and surface roughness error H (as shown in Figure 4b) exist in the inner hole, in order to eliminate the geometric tolerance before boring, the minimum machining allowance on one side of the boring process should include the values of the above errors and defects. Considering the inevitable installation error of the workpiece during boring in this process, that is, the error E (as shown in Figure 4C) between the original hole axis O-O and the rotation axis O ‘- o’ after workpiece installation, and the dimensional tolerance T during boring in this process, the minimum machining allowance Z of this process can be expressed by the following formula:

Z≥t/2+h+p+n+e (side allowance)

?? ??? ?? ???? ??? ??? ???? 4

Fig. 4 diagram of components of minimum machining allowance

For different parts and different processes, the values and forms of the above errors are also different. When determining the process machining allowance, it should be treated differently. For example, the slender shaft is easy to bend and deform, and the linear error of the busbar has exceeded the tolerance range of the diameter dimension, and the process machining allowance should be appropriately enlarged; For the process of machining with floating reamer and other tools to locate the machining surface itself, the influence of installation error E can be ignored, and the process machining allowance can be reduced accordingly; For some finishing processes mainly used to reduce surface roughness, the size of process machining allowance is only related to surface roughness H.

3.principles to select machining allowance for parts

The selection of machining allowance of parts has a great relationship with the material, size, accuracy grade and machining method of parts, which needs to be determined according to the specific situation. The following principles must be followed when determining the machining allowance of parts:

(1) The minimum machining allowance shall be adopted in order to shorten the machining time and reduce the machining cost of parts.

(2) Sufficient machining allowance shall be reserved, especially for the final process. The machining allowance shall ensure the accuracy and surface roughness specified on the drawing.

(3) When determining the machining allowance, the deformation caused by the heat treatment of the parts should be taken into account, otherwise scrap may occur.

(4) When determining the machining allowance, the machining method and equipment as well as the possible deformation in the machining process should be considered.

(5) The size of the machined parts shall be taken into account when determining the machining allowance. The larger the part, the larger the machining allowance. Because when the size of the part increases, the possibility of deformation caused by cutting force and internal stress will also increase.

4 Conclusion

In the actual production, the manufacturing methods of many parts are temporarily determined, such as: the centrifugal cast stainless steel sleeve is rolled and welded with steel plate; The cooler end cover, motor base and gear box sanding parts are replaced with weldments, etc. There are many uncertain factors in the manufacturing process of these parts, and its shape error is difficult to predict. Therefore, the three methods introduced in this paper to determine the machining allowance of these parts are not applicable to the determination of machining allowance of these parts, and can only be flexibly mastered in the actual manufacturing process.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 国产成人一区二区免费av-国产成人精品一区二区不卡-亚洲乱码精品一区二区在线-青草视频免费在线观看尤物| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 91精品啪在线观看国产91蜜桃-国产国拍亚洲精品av在线-日韩在线亚洲清纯av天堂-久久亚洲国产精品五月天| 日韩精品一区二区三中文字幕-欧美亚洲日本精品一区二区-日韩av亚洲在线观看-亚洲欧美国产日韩激情| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 久久精品国产色蜜蜜麻豆-国产精品一区二区三区你懂的-日本国产精品中文字幕-91黄色国产在线播放| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看| 日本三区三级岛国片在线观看-免费av在线观看岛国大片-av在线导航国产精品-中文资源网天堂网亚洲精品| 国产大波精品一区二区在线-男女床上激情免费网站-日韩成人在线高清视频-国产精品视频免费自拍| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 亚洲性生活免费播放av-成人深夜在线免费观看-久久国产精品亚洲精品-黄色大片亚洲黄色大片| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 国产视频深夜在线观看-在线播放亚洲欧洲亚洲-不卡日韩av在线播放-国产午夜视频在线观看| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品|