色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

WC-Co carbide coal mining bits are vulnerable components in coal mining and excavation machinery. They consist of a low-carbide?steel body that has been quenched and tempered, with WC-Co carbide inserts embedded or brazed onto it. The performance of these bits directly affects coal production capacity, power consumption, excavation performance, and excavation costs, making them a critical factor in economic mining.

During coal cutting, mining bits rotate and cut under high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, and intense frictional heat generated by the contact with coal rock. The cutting edge can reach a temperature of 600-800℃, resulting in significant thermal stresses, as well as other mechanical behaviors such as contact fatigue and even fracture. Under such complex working conditions, mining bits are prone to failure. To effectively extend the service life of these bits and reduce coal mining costs, it is crucial to identify their main failure modes and causes by conducting failure analysis.

What are the 3 Main Failure Modes of Carbide Coal Mining Bits and how can We Address Them? 2

1Failure modes

Carbide coal mining bits are subjected to high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, thermal stresses, wear, and other effects during coal cutting. Although coal is not particularly hard, they often encounter harder minerals such as quartz and gangue during operation, resulting in failures such as carbide fracture, wear, and breakage.

2 Failure analysis

2.1 Fracture of coal mining bits

During coal cutting, the carbide tooth is exposed to high compressive stress and impact load, leading to poor contact with the coal seam. The stresses can cause impact fatigue, resulting in cracks and the falling off of large pieces. Fracture occurs when the stress exceeds the bending strength limit of the carbide. In addition, during the cutting process, the temperature of the tooth head rapidly increases due to friction, while it rapidly decreases during idle rotation. This process subjects the carbide tooth to periodic tensile-compressive thermal stress, and with the cyclic action of this stress, thermal fatigue cracks will be produced, leading to the fracture of the mining bits. The insufficient bending strength of the carbide is the main cause of fracture, and micro-defects can also produce stress concentration areas leading to fracture.

 

2.2 Wear of coal mining bits

During the process of coal cutting, the coal mining bits?come into direct contact with coal and rock, which results in mutual abrasion. Due to the existence of impurities such as quartz and coal gangue with strong wear resistance in the coal seam, impact fatigue and abrasive cutting will occur, which will cause abrasive wear failure to the cutting teeth. When the coal mining machine coal mining bits?cut through the coal seam, friction generates heat, resulting in a high temperature of 600-800℃ on the surface of the coal mining bits. The temperature rises and falls alternately, which makes the mining cutting teeth suffer from thermal fatigue wear. Meanwhile, under the alternating impact load, the surface of the coal mining bits?will deform and gradually form microscopic cracks. The cracks will continuously expand under periodic impact loads, and the surface cobalt phase will be preferentially consumed. The WC particles will detach due to the loss of the cobalt phase’s bonding effect, eventually resulting in large-scale peeling of the carbide?particles. In addition, there will also be phenomena of large WC particles breaking and losing during the coal cutting process.

2.3 Fracture of coal mining bits

Hard coal mining bits?contain certain inherent defects such as pores, cobalt pools, surface microcracks, and coarse WC particles, which can cause stress concentration and become the fracture source of the carbide. During the coal mining process, due to repeated impacts, extrusions, and wear, the cobalt phase is preferentially squeezed out and lost. The bonding between the WC particles that are bonded together by the cobalt phase’s bonding effect is destroyed, and the WC particles detach. At the same time, at the site where the WC particles are broken and detached due to the impact load, stress concentration will also occur, which is prone to induce the formation and extension of cracks.

3Measures to Improve the Performance of coal mining bit??

Based on the analysis of the article, the main reasons for the failure of cemented coal mining bits?are:

  1. The bending strength of the carbideis not enough, and the instantaneous impact load during work can easily reach or even exceed the bending strength value of the carbide.
  2. Quartz and gangue in the coal seam cause wear on the carbide.
  3. Fatigue cracks caused by periodic and sudden impact loads and frictional heat generated by severe friction between the coal mining bitsand the coal seam.

Therefore, in order to improve the efficiency of using cemented coal mining bits, efforts should be made to improve the bending strength, wear resistance, and fatigue resistance of the carbide?in the preparation stage. At the same time, the cooling force of the teeth should be increased during use to reduce the hot and cold cycles of the coal mining bits?and prolong their service life.

3.1 Improve the strength and toughness of coal mining bits

Porosity, WC grain size and distribution, and density differences between the upper and lower parts of cemented carbide are the main factors affecting bending strength and toughness. Currently, people mainly use methods such as preparing non-uniform structure cemented carbide, using coarse-grained ore, gradient structure cemented carbide, adding trace elements to modify the bonding phase, and using new molding and sintering processes to improve the strength and toughness of cemented carbide, thereby prolonging the service life of the carbide. The engineers of Metallurgical Ultra Hard Materials Co., Ltd. believe that, under the premise of appropriately reducing the cobalt content of the carbide, cemented carbide with an average grain size of 5.8 μm WC should be produced. By comparing with ordinary cemented carbide, it is found that the bending strength and toughness of the cemented coal mining bits?produced using coarse-grained WC and low Co content have been improved. In other words, while the coarse-grained carbide?has high wear resistance, its strength and toughness have also been improved.

3.2 Improve the wear resistance of coal mining bits

The wear resistance of cemented carbide is determined by the microstructure and chemical composition of the carbide. Currently, in order to ensure that cemented carbide cutting teeth have good strength and toughness, the cobalt content of the cemented carbide carbide?is generally high. People mainly study the microstructure of cemented carbide, adjust the chemical composition of the carbide, and control the mechanical and physical properties of the carbide?(such as strength, hardness, toughness, etc.) to improve the wear resistance of the carbide. An article pointed out that the wear resistance of the carbide?can be effectively improved by minimizing the occurrence and growth of carbide?defects and adding an appropriate amount of rare earth elements.

failure of carbide coal mining bits

3.3 Improve the fatigue resistance of coal mining bits

Cobalt content and WC grain size are the main factors affecting the fatigue resistance of cemented carbide. The production and expansion depth and speed of thermal fatigue cracks gradually decrease with the increase of cobalt content or WC grain size in the carbide. In addition, the increase in WC grain size will also increase the average free path of the cobalt phase, thereby improving the fatigue resistance of the carbide.

??

Metyou Carbide Co., Ltd. has conducted a failure analysis on the used carbide coal-cutting teeth recovered from customers and reached the following conclusions:

1)the main forms of carbide coal-cutting teeth failure are fracture, wear, and breakage.

2) the main causes of coal mining bits?failure are insufficient bending strength, poor wear resistance, and poor fatigue resistance of the carbide.

3) the service life of carbide coal-cutting teeth can be improved by means of improving the purity of raw materials, changing the carbide?composition, optimizing the forming and sintering process, controlling the grain size of the carbide, and conducting heat treatment on the carbide.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 日韩成av在线免费观看-中文字幕亚洲第一精品-亚洲欧美日韩国产在线-国产精品国精品国产免费| 亚洲三级电影久久网络-中文字幕第一页亚洲天堂-九九热视频这里只有精-国产免费av国片精品| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 午夜视频在线观看色诱-久久精品午夜福利视频-熟妇人妻av一区二区三区-一区二区三区中文字幕在线观看| av午夜福利一片免费看久久-中文字幕日韩无敌亚洲精品-四虎高清成人在线观看-亚洲开心婷婷中文字幕| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 午夜精品久久内射电影-亚洲精品自拍视频免费在线-国产免费观看久久黄av麻豆-麻豆国产精品伦理视频| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 亚洲精品成人久久av中文字幕-中文av毛片在线观看-一本之道加勒比在线视频-日韩av一区二区在线观看不卡| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| 人妻少妇精品久久中文字幕-在线免费观看亚洲小视频-网友偷拍视频一区二区三区-亚洲国产精品日韩av在线| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 国产一区二区精品在线播放-亚洲欧美精品伊人久久-亚洲精品日韩在线播放-国产精品色av一区二区三区| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频|