色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Coarse Tungsten Carbide (WC) is a fundamental raw material for producing coarse WC-Co alloys. The classic method for producing this tungsten carbide involves high-temperature reduction of tungsten oxide and high-temperature carburization. The Fischer particle size of tungsten carbide ranges from about 10 μm to over 20 μm. The coarser the particles, the higher the manufacturing cost. Choosing high-quality and cost-effective raw powder is an important consideration for many alloy and tool manufacturers. This study selects tungsten carbide powders with significantly different particle sizes and investigates the relationship between the characterization parameters of these powders and the grain size of the alloy. The aim is to provide insights that could help reduce energy and material consumption in the manufacture of coarse-grained alloys.

 

Experimental Methods

Raw Materials

The experiment uses coarse and extra-coarse WC powders from well-known suppliers, with their main characteristics shown in Table 1. Additionally, 2.0 μm cobalt powder from the same supplier was also used.

particle size

Experimental Methods

For the preparation of WC-10%Co (where all content is given in weight percentage), weigh 900 g of WC, 100 g of Co, and 20 g of PEG. Measure 235 mL of alcohol and 2000 g of grinding balls. Add these into a 2.4 L ball mill. The mill is operated at a speed of 63 r/min for 14.5 hours. After milling, the mixture is dried, sieved, and then pressed into samples weighing 10 g each. The samples are sintered in a continuous vacuum sintering furnace at 1450°C.

Particle Size Measurement

For coarse tungsten carbide, measure the Fischer particle size in both the as-supplied and milled states. The samples are resin-mounted and analyzed using a metallurgical microscope to determine the grain size and particle size distribution of the powder. The alloy grain size and particle size distribution are measured using classic metallographic methods, and the coercive force of the samples is also assessed.

 

 

Results and Analysis

Fischer Particle Size (Fsss) and Alloy Grain Size

As-Supplied Particle Size and Alloy Grain Size

The metallographic images of alloys made from WC powders #1 and #2 are shown in Figures 1 and 2, respectively. Comparing Figures 1 and 2, it can be observed that the WC grain size in Figure 2 appears to be slightly coarser than in Figure 1. This indicates that coarser as-supplied Fsss particle sizes of WC lead to coarser grain sizes in the WC-Co alloys. Metallographic analysis shows that the average WC grain sizes for alloys made from powders #1 and #2 are 4.8 μm and 5.8 μm, respectively. Thus, the average grain size of WC in sample #2 is 1.2 times that in sample #1. The as-supplied Fsss particle size of #2 WC powder is 2.5 times that of #1 WC powder. Clearly, there is no direct proportional relationship between the as-supplied Fsss particle size of WC powder and the alloy grain size. Additionally, the Fsss particle size values for #1 WC powder are 2.5 times the alloy grain size, and for #2 WC powder, it is 5.3 times the alloy grain size. This indicates that the as-supplied WC powders for both samples are primarily aggregated polycrystalline WC particles, with more severe agglomeration for coarser WC powders.

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 2

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 3

Milled ?? ?? and Alloy Grain Size

Comparing Table 1 with the metallographic grain sizes in Figures 1 and 2, it can be seen that the Fsss particle sizes of milled WC powders #1 and #2 are relatively close to the alloy grain sizes. Moreover, the measured alloy grain sizes are higher than the milled Fsss particle size values. This discrepancy is due to differences in measurement principles as well as grain growth during the sintering process. However, it clearly indicates that the Fsss particle sizes of coarse WC powders in the milled state are very close to the alloy grain sizes. The ratios of average grain sizes to milled particle sizes for alloys #1 and #2 are 1.15 and 1.31, respectively.

Raw Material WC Grain Size and Alloy Grain Size

Results from Direct Metallographic Measurement

Metallographic images of #1 and #2 WC powders after mounting and etching are shown in Figures 3 and 4. The grain sizes measured using metallographic methods are 5.31 μm and 8.5 μm, respectively. The grain size distributions of the powders and alloys are shown in Figures 5 and 6.

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 4 ?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 5

Figures 3 and 4 clearly indicate that the grain size of #2 WC is significantly larger than that of #1 WC. This suggests that WC with a coarser as-supplied Fischer particle size also has coarser grains. Additionally, it is evident that #1 WC exhibits better dispersion, with less pronounced sintering between particles compared to #2 WC. The severe sintering in #2 WC particles is a major reason why the metallographic grain size is much larger than the alloy grain size, and also explains why the grains in #2 WC are much larger than those in #1 WC.

From the grain size distribution of the raw powders and alloys in Figures 5 and 6, it can be seen that sample #1 contains coarse WC grains of 15–20 μm in the raw material, which are not present in the alloy. In contrast, sample #2 has a substantial amount of WC grains in the 15–35 μm range, though only a small amount of 15–20 μm grains are found in the alloy. This suggests that the severe sintering of the mounted WC, although difficult to distinguish by metallographic methods after etching, was fragmented during the intense grinding process.

Moreover, comparing the WC and alloy grain size distributions in Figures 5 and 6 shows that the grain size distribution of WC in sample #1 is more consistent with the alloy grain distribution than in sample #2. This consistency is a significant reason why many researchers believe that WC similar to sample #1 is more conducive to producing coarse alloys with a more uniform grain size.

WC Particle Size and Alloy Coercive Force

The coercive forces of the alloys made from #1 and #2 powders are 4.6 kA/m and 4.3 kA/m, respectively. The relationship between the WC-Co alloy grain size and the alloy’s coercive force can be expressed using the empirical formula (1).

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 6

In the formula:

  • Hc= coercive force of the alloy (kA/m)
  • Com= cobalt content in the alloy (%)
  • Dwc= average WC grain size in the alloy (μm)

 

According to the calculations, the average grain sizes of alloys #1 and #2 are 7.4 μm and 8.8 μm, respectively. Clearly, the calculated grain sizes are significantly larger than the measured grain sizes, but the difference between the average grain sizes of alloys #2 and #1 is close to the difference observed using metallographic methods. The results obtained from formula (1) do not show a clear quantitative relationship with the Fsss particle sizes of the raw WC in both states, but the size of the raw material particles can still be used to predict the alloy grain size and coercive force.

Conclusions

Based on the above, the following conclusions can be drawn:

1.Coarse WC powders with larger as-supplied Fsss particle sizes tend to have higher milled Fsss particle sizes and larger grain sizes, leading to alloys with larger grain sizes.

2.The Fsss particle size in the milled state of coarse WC can be used to evaluate the grain size of coarse WC and predict the grain size of WC-Co alloys. Under the test conditions, the alloy grain size is 1.1 to 1.3 times the Fsss particle size of the milled WC.

3.Coarse WC powders with as-supplied Fsss particle sizes around 10 μm have a better consistency in grain size distribution with the alloy WC grain size distribution compared to extremely coarse WC powders with Fsss particle sizes above 25 μm.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 五月婷婷丁香综合入口-日本少妇免费中文字幕-96青草视频在线观看-中文字幕成人精品久久不卡| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 九九热在线精品视频免费-日韩高清免费在线视频-熟女快要高潮了在线观看-亚洲午夜福利视频一级| 四虎最新在线观看视频-水蜜桃一二二视频在线观看免费-一区二区精品在线观看视频-成人高清在线播放视频| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 正在播放后入极品美少妇-亚洲一区二区三区自拍麻豆-国产亚洲精品成人久久-av老司机亚洲精品久久| 日本女同免费在线观看-在线视频成人国产自拍-日韩av在线观看大全-后入翘臀剧情片在线看| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 国产欧美日韩一区二区三区88-国产亚洲av嫩草精品影院-成人国产一区二区三区麻豆-在线观看午夜宅男视频| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 日韩中文有码字幕在线观看-黑人国产一区二区三区-久久国产精品久久精品-国产激情在线一区二区三区| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 亚洲一区二区三区免费视频观看-日韩情爱视频在线观看-丝袜美足在线视频国产在线看-日韩美女啪啪不卡视频| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 日本免费久久精品视频-毛很浓密很多黑毛熟女-97这里只有精品在线-亚洲乱码国产乱码精品精| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 99一区二区三区精品人妻-国产污视频网站在线观看-伊人激情av一区二区三区-天堂av大片免费观看| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品|