色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

CNC ?? ??? ?? ???? ???? 7 ?? ??

The positioning accuracy of CNC machine tools refers to the positional accuracy that can be achieved by the movement of each coordinate axis of the machine tool under the control of the numerical control device. The positioning accuracy of CNC machine tools can be understood as the motion accuracy of the machine tool. Ordinary machine tools are manually fed. The positioning accuracy is mainly determined by the reading error. The movement of the CNC machine tool is realized by digital program instructions, so the positioning accuracy is determined by the numerical control system and mechanical transmission error.

CNC is the abbreviation of Computer Numerically Controlled. The control system is capable of logically processing a program having control code or other symbolic instructions and decoding it, using coded digital representations. Through the arithmetic processing, various control signals are issued by the differential control device to control the movement of the machine tool, and the parts are automatically processed according to the shape and size required by the drawings.

The movement of each moving part of the machine tool is completed under the control of the numerical control device. The precision that each moving part can achieve under the control of the program command directly reflects the precision that the machined part can make. Therefore, the positioning accuracy is an important test. Content.

1. Linear motion positioning accuracy detection

Linear motion positioning accuracy is generally performed under no-load conditions on machine tools and benches. According to the national standards and the provisions of the International Organization for Standardization (ISO standards), the detection of CNC machine tools should be based on laser measurements. In the absence of a laser interferometer, it is also possible for the average user to use a standard scale with an optical reading microscope for comparative measurements. However, the accuracy of the measuring instrument must be one to two levels higher than the accuracy of the measurement.

To reflect all the errors in multiple positioning, the ISO standard stipulates that each positioning point calculates the average value and the dispersion difference based on five measurement data, and the dispersion difference band formed by the dispersion band.

2, linear motion repeat positioning accuracy detection

The instrument used for the test is the same as that used to detect thepositioning accuracy. The general detection method is to measure at any three positions near the midpoint and the two ends of each coordinate stroke. Each position is quickly moved, and the positioning is repeated 7 times under the same conditions. The stop position value is measured, and the maximum reading difference is obtained. Taking one-half of the most significant difference among the three positions, the positive and negative signs are attached as the repeated positioning accuracy of the coordinates, which is the most basic index reflecting the stability of the axis motion accuracy.

3, linear motion origin return accuracy detection

The origin return precision is essentially the repeat positioning accuracy of a special point on the coordinate axis, so its detection method is completely the same as the repeat positioning accuracy.

4. Reverse error detection of linear motion

The opposite error of the linear motion also called the loss amount, includes the reverse dead zone of the drive position (such as servo motor, servo motor, and stepping motor) on the coordinate axis feed chain, and each mechanical motion transmission pair A comprehensive reflection of errors such as backlash and elastic deformation. The larger the error, the lower the positioning accuracy and the repeat positioning accuracy.

The detection method of the reverse error is to move a distance forward or backward in the stroke of the measured coordinate axis and use the stop position as a reference, and then give a specific movement command value in the same direction to make it move a distance. Then run the same distance in the opposite direction and measure the difference between the stop position and the reference position. The measurement has performed a plurality of times (generally seven times) at three points near the midpoint and both ends of the stroke, and the average value at each position is obtained, and the maximum value among the obtained average values is the reverse error value.

5. Positioning accuracy detection of rotary table

Measuring tools include standard turret, angle polyhedron, circular grating and collimator (collimator), etc., which can be selected according to the specific conditions. The measurement method is to make the table forward (or reverse) to an angle and stop, lock, and position. Use this position as a reference, then quickly turn the table in the same direction and measure every 30 locks. Each of the forward rotation and the reverse rotation is measured for one week, and the maximum value of the difference between the actual rotation angle of each positioning position and the theoretical value (command value) is the division error.If it is a CNC rotary table, it should be a target position every 30, for each target position to quickly locate 7 times from the positive and negative directions, the difference between the area and the target position is actually reached, and then according to GB10931- 89 The method specified in the “Method for Evaluating the Position Accuracy of Digital Control Machines” calculates the average position deviation and standard deviation, the difference between the maximum value of all the average position deviations and the standard deviation and the sum of all the average position deviations and the standard deviation. It is the positioning accuracy error of the CNC rotary table.

Considering the dry-type transformer to the actual use requirements, it is generally essential to measure several equal-angle points such as 0, 90, 180, 270, etc., and the accuracy of these points is required to be improved by one level compared with other angular positions.

6. Repeated indexing accuracy detection of rotarytable

The measurement method is repeated three times in three places in one week of the rotary table, and the detection is performed in the forward and reverses directions respectively. The maximum value of the difference between the values of all readings and the theoretical value of the corresponding position. If it is a CNC rotary table, take one measurement point every 30 as the target position, and perform five fast positionings for each target position from the positive and negative directions respectively, and measure the difference between the actual arrival position and the target position. That is, the position deviation, and then calculate the standard deviation according to the method specified in GB10931-89, which is six times of the maximum value of the standard deviation of each measuring point, which is the repeating indexing precision of the numerical control rotary table.

7. The origin return accuracy detection of the rotary table

The measurement method is to perform the origin return from 7 arbitrary positions, measure the stop position, and use the maximum difference read as the origin return accuracy.

It should be pointed out that the detection of the current positioning accuracy is measured under the condition of fast and positioning. For some CNC machine tools whose feeding system is not very good, different positioning accuracy values will be obtained when positioning with varying speeds of feed. Also, the measurement result of the positioning accuracy is related to the ambient temperature and the working state of the coordinate axis. At present, most of the numerical control machine tools adopt a semi-closed loop system, and the position detecting components are mostly mounted on the driving motor, which generates an error of 0.01 to 0.02 mm in a stroke of 1 m. It is not strange. This is an error caused by thermal elongation, and some machines use a pre-stretch (pre-tightening) method to reduce the impact.

The repeating positioning accuracy of each coordinate axis reflects the most basic accuracy index of the shaft, which reflects the stability of the motion accuracy of the axle, and it cannot be assumed that the machine tool with poor precision can be stably used for production. At present, due to the increasing number of functions of the numerical control system, system errors such as pitch accumulation error and backlash error can be compensated for the motion accuracy of each sitting injector. Only the random error cannot be paid, and the repeat positioning accuracy is repeated. It reflects the absolute random error of the feed drive mechanism. It can’t be corrected by the CNC system compensation. When it is found to be out of tolerance, only the fine adjustment of the feed drive chain is performed. Therefore, if the machine tool is allowed to be selected, it is better to choose a machine with high repeatability.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 精品三级国产三级在线专区-精品一区二区三区视频观看-在线精品日韩亚洲欧一二三区-美女高潮无套内射视频免费| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 久久综合九色综合久久-在线看日韩欧美中文字幕-国产成人亚洲精品青草天美-91亚洲中文天堂在线观看| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 欧美日韩精品啪啪91-成年人免费在线观看大片-国产精品麻豆一区二区三区v视界-av中文在线中文亚洲| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 99精品一区二区成人精品-激情自拍视频在线观看-久久热这里只有精品视频-伊人色综合九久久天天蜜桃| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 99一区二区三区精品人妻-国产污视频网站在线观看-伊人激情av一区二区三区-天堂av大片免费观看| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 在线三级电影在线观看-在线成人激情自拍视频-日本在线视频播放91-国产精品一区二区男女羞羞无遮挡| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 欧美亚洲国产另类在线-九九热精品在线免费视频-日本高清有码在线一区-青草第一视频在线观看| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 久久国产国内精品国语对白-欧美精品欧美极品欧美激情-日韩剧情电影在线播放-97在线免费精品视频| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 中文中国女厕偷拍视频-男人天堂亚洲天堂av-精品国产一区二区三区香蕉蜜臂-国产亚洲日本精品成人专区| 中文字幕在线乱码日本-亚洲国产成人久久精品99-交缠的肉体中文字幕在线-久热精品视频在线免费| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 少妇一级aa一区二区三区片-欧美欧美欧美欧美一级片-91在线观看视频下载-自拍视频在线观看一区二区| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 精品国产日韩一区三区-成人激情毛片免费在线看-国产一区二区高清日韩-日韩成人黄片免费在线观看| 亚洲性生活免费播放av-成人深夜在线免费观看-久久国产精品亚洲精品-黄色大片亚洲黄色大片| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆|