色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

We are aware of that surface roughness means a lot in manufacturing industry. When the concept is recalled to your mind, there must be some common textures on machined parts, such as bright mirror surface, matte, and dull polish. They are what different surface roughness embodies in macroscopic condition.

Definition of surface roughness

As is known to us, asperity of a parts surface can be profiled as a series of jagged valleys in which there are crest, through, and spacing between them.

As a concept describing surfaces microscopic structure, surface roughness in fact is the length S between these crests(or troughs, usually below 1mm) and depth Z from trough to crest shown in the following diagram.

In general, we differentiate varying surface condition according to the range of S.

S<1mm, the asperity is regarded as surface roughness,

1≤S≤10mm, it’s regarded as waviness,

S>10mm, it’s called as geometric unevenness.  

What-to-know about Surface Roughness 2

3 standards and their comparison table

In China, the standards measuring surface roughness by the 3 Indexes, (unit:mm)which are average arithmetic deviation of contour Ra, average height of unevenness Rz, and the maximum depth of the valley Ry.

In most of actual production activities, Ra is mostly applied. While in Japan Ry gets mostly used, referred as Rmax. People in European region use VDI 3400. We’ve made a comparison table of the 3 standards shown as below, 

What-to-know about Surface Roughness 3

Diagram 2. The comparison between Ra, Rmax,and VDI3400.

Formation factors of surface roughness

Surface roughness is generally formed by processing methods and other factors, such as friction between tool and part surface, plastic deformation of surface metal when chips are separated, high frequency vibration in process system, discharge pits in electrical machining, etc. Because of the difference of processing method and workpiece material, the depth, density, shape and texture of the traces left on the machined surface are different.

What-to-know about Surface Roughness 4

The Main Effect of Surface Roughness on Parts

Affect wear resistance.

The rougher the surface, the smaller the effective contact area between the surfaces, the greater the pressure, the greater the friction resistance and the faster the wear.

Affect the stability of coordination.

For clearance fit, the rougher the surface is, the easier the wear and tear will be, and the clearance will increase gradually in the working process. For interference fit, the actual effective interference will be reduced and the connection strength will be reduced because of the extrusion of micro-convex peaks during assembly.

The fatigue strength is affected.

There are large troughs on the surface of rough parts. Like sharp notches and cracks, they are sensitive to stress concentration, which affects the fatigue strength of parts.

Influencing corrosion resistance.

Rough parts surface, easy to make corrosive gases or liquids through the surface of the micro-valley infiltration into the metal inner layer, resulting in surface corrosion.

Influencing sealing

Rough surfaces do not fit tightly, and gases or liquids leak through cracks between contact surfaces.

The contact stiffness is affected

Contact stiffness is the ability of parts to resist contact deformation under external force. The stiffness of the machine depends to a great extent on the contact stiffness between the parts.

The measurement accuracy is affected

The surface roughness of measured parts and measuring tools will directly affect the accuracy of measurement, especially in precision measurement.

In addition, surface roughness has different effects on coating, thermal conductivity and contact resistance, reflectivity and radiation performance, resistance of liquid and gas flow, and current flow on conductor surface.

Evaluation Basis of Surface Roughness

Sampling Length

What-to-know about Surface Roughness 5

Sampling length is a reference line length for evaluating the age of surface roughness. According to the formation and texture characteristics of the actual surface of the part, the length of the section reflecting the surface roughness characteristics should be selected, and the sampling length should be measured according to the total direction of the actual surface profile. Sampling length is defined and selected to limit and reduce the influence of surface waviness and shape error on the measurement results of surface roughness.

Assessment length

What-to-know about Surface Roughness 6

Assessment length is a necessary length for assessing contour. It may include one or more sampling lengths. Because the surface roughness of each part of the part surface is not necessarily uniform, it is often unreasonable to reflect the characteristics of a certain surface roughness on a sampling length, so it is necessary to take several sampling lengths on the surface to evaluate the surface roughness. Assessment length generally includes five sampling lengths.

datum line

The datum line is the contour midline used to evaluate the surface roughness parameters. There are two kinds of datum lines: the least squares midline of the contour: within the sampling length, the sum of the outline offset of each point on the contour line is the smallest, and it has a geometric contour shape. Arithmetic mean midline of contour: Within sampling length, the area of contour on both sides of the midline is equal. In theory, the least squares midline is an ideal datum line, but it is difficult to obtain in practical application. Therefore, the arithmetic average midline of contour is generally used to replace it, and a line with approximate position can be used to replace it in measurement.

Surface roughness evaluation parameters

Height characteristic parameters

Ra contour arithmetic mean deviation: the arithmetic mean of the absolute value of contour offset within the sampling length (lr). In practical measurement, the more the number of measuring points, the more accurate Ra is.

Maximum height of Rz contour: the distance between the top line of contour peak and the bottom line of valley.

Ra is preferred in the range of commonly used amplitude parameters. Before 2006, another evaluation parameter in the national standard was “10-point height of micro-roughness” expressed by Rz and maximum height of contour expressed by Ry. After 2006, 10-point height of micro-roughness was cancelled in the national standard and maximum height of contour expressed by Rz.

Spacing characteristic parameters

The average width of the RSM contour unit. Within the sampling length, the average distance of contour micro-roughness. Microscopic irregularity spacing refers to the length of contour peaks and adjacent contour valleys on the midline. In the case of the same Ra value, the Rsm value is not necessarily the same, so the reflected texture will be different. The surface that pays attention to the texture usually pays attention to the two indicators of Ra and Rsm.

The shape characteristic parameters of Rmr are expressed by the length ratio of the contour support, which is the ratio of the length of the contour support to the sampling length. The length of the contour support is the sum of the sectional lengths of each section within the sampling length, parallel to the midline and intersected with the contour peak line C.

Surface Roughness Measurement Method

comparison method

It is used in the field measurement of workshop, and it is often used in the measurement of medium or rough surface. The method is to determine the measured surface roughness value by comparing the measured surface with a certain number of roughness samples.

touch needle method

The surface roughness is slowly sliding along the measured surface with a diamond stylus whose radius of curvature is about 2 micron. The displacement of the diamond stylus is converted from an electrical length sensor to an electrical signal. After amplification, filtering and calculation, the surface roughness value is indicated by a display instrument. The profile curve of the measured section can also be recorded by a recorder.

Generally speaking, the measuring tool which can only display the surface roughness value is called the surface roughness measuring instrument, and the surface roughness profiler which can record the surface profile curve is called the surface roughness profiler. These two measuring tools have electronic calculating circuit or computer. They can automatically calculate the arithmetic mean deviation Ra of contour, the 10-point height Rz of micro-roughness, the maximum height Ry of contour and other evaluation parameters. They have high measuring efficiency and are suitable for measuring the surface roughness of Ra ranging from 0.025 to 6.3 um.

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項(xiàng)目です

av午夜福利一片免费看久久-中文字幕日韩无敌亚洲精品-四虎高清成人在线观看-亚洲开心婷婷中文字幕| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 日日夜夜久久国产精品-国产男女无遮挡猛烈免费观看-在线观看热久精品视频-国产香蕉视频在线内射| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 亚洲精品中文综合第一页-91九色国产在线观看-小少妇特殊按摩高潮不止-沈阳老熟女多毛嗷嗷叫| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 亚洲一区二区日韩精品在线观看-白浆高潮国产免费一区二区三区-热久久这里只有精品99-亚洲精品在线观看中文字幕| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 久久97久久97精品免视看秋霞-黄片av毛片在线免费观看-日韩av高清不卡免费观看-成人午夜福利视频观看地址| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 日本av自拍偷拍视频-日韩精品人妻一区二区三区-看片福利国产午夜三级看片-在线观看视频最新信息好幫手| 色人阁免费在线视频观看-中文字幕中文字幕日韩一区-91麻豆成人精品国产-亚洲精品成人剧情在线观看| 在线精品日韩一区二区三区-国产免费人成网站在线观看-白白发布视频一区二区视频-乱妇乱女的熟妇熟女色综合| 日韩视频精品在线播放-国产91亚洲精品久久-亚欧洲乱码视频在线观看-亚洲国产成人91精品| 九九九热在线免费观看-亚洲午夜理论片在线观看-欧美日韩亚洲国产第一-国产高清一区二区av在线| 日本精品视频免费在线-国产精品自在在线影院-日韩午夜一区二区三区-国产精品中文第一字幕| 日韩中文有码字幕在线观看-黑人国产一区二区三区-久久国产精品久久精品-国产激情在线一区二区三区| 成人精品一区二区三区久久-中文字幕乱码亚洲无线三区-亚洲精品亚洲人成人网-中文字幕五月久久婷热| 国产欧美日韩一区二区三区88-国产亚洲av嫩草精品影院-成人国产一区二区三区麻豆-在线观看午夜宅男视频| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 国产好大好硬好爽好湿免费视频-国产精品一区二区精品一区二区-白白色发布在线播放国产-99久久国产精品成人观看| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 免费岛国av在线观看-国产一区二区三区av在线-亚洲成人精品综合在线-日韩亚洲一区二区三区在线| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放|