色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Lithium batteries are widely used in electronic products and automobiles as new energy sources. In recent years, the state has vigorously supported the new energy industry, and many domestic and foreign companies and research institutes have increased their input and continuously researched new materials to improve various aspects of lithium battery performance. Lithium-ion materials and related full-cell, half-cell, and battery packs undergo a series of tests before being put into production. Here’s a summary of several common test methods for lithium-ion materials.The most intuitive structural observations: scanning electron microscopy (SEM) and transmission electron microscopy (TEM)Scanning electron microscope (SEM)Since the observation scale of the battery material is in the sub-micron range of several hundreds of nanometers to several micrometers, the ordinary optical microscope cannot meet the observation requirements, and a higher magnification electron microscope is often used to observe the battery material.Scanning electron microscope (SEM) is a relatively modern cell biology research tool invented in 1965. It mainly uses secondary electron signal imaging to observe the surface morphology of the sample, that is, using a very narrow electron beam to scan the sample, through the electron beam and The interaction of the sample produces various effects, which are mainly the secondary electron emission of the sample. Scanning electron microscopy can observe the particle size and uniformity of lithium-ion materials, as well as the special morphology of nanomaterials themselves. Even by observing the deformation of materials during the cycle, we can judge whether the corresponding cycle-keeping ability is good or bad. As shown in Figure 1b, titanium dioxide fibers have a special network structure that provides good electrochemical performance.Fig. 1: (a) Scanning electron microscopy (SEM) structural schematic; (b) Photographs obtained by SEM testing (TiO2 nanowires)1.1 SEM scanning electron microscope principle:As shown in Figure 1a, SEM is the use of electron beam bombardment of the sample surface, causing secondary electrons such as signal emission, the main use of SE and amplification, transmission of information carried by SE, point-by-point imaging in time series, imaging on the tube.1.2 Scanning electron microscope features: (1) Strong stereoscopic image and observable thickness (2) Sample preparation is simple and larger samples can be observed (3) Higher resolution, 30 to 40? (4) The magnification can be continuously variable from 4 times to 150,000 (5) Can be equipped with accessories for quantitative and qualitative analysis of micro-area1.3 Observing objects:Powders, granules, and bulk materials can all be tested. No special treatment is required except that they are kept dry before testing. It is mainly used to observe the surface morphology of the sample, the structure of the split surface, and the structure of the inner surface of the lumen. It can intuitively reflect the specific size and distribution of the particle size of the material.2. TEM transmission electron microscopeFigure 2: (a) Structural schematic of a TEM transmission electron microscope; (b) TEM test photo (Co3O4 nanosheet)2.1 Principle: The incident electron beam is used to pass through the sample to produce an electronic signal that carries the cross-section of the sample. It is then imaged on a fluorescent plate after being amplified by a multi-level magnetic lens, and the entire image is established at the same time.2.2 Features: (1) Thin sample, h<1000 ? (2) 2D planar image, poor stereoscopic effect (3) High resolution, better than 2 ? (4) Complex sample preparation2.3 Observing objects:Nano-scale materials dispersed in the solution need to be dripped on the copper mesh before use, prepared in advance and kept dry. The main observation is the internal ultrastructure of the sample. The HRTEM high-resolution transmission electron microscope can observe the corresponding lattice and crystal plane of the material. As shown in Figure 2b, observing the 2D planar structure has a better effect, with a poor stereoscopic quality relative to the SEM, but with higher resolution, more subtle parts can be observed, and the special HRTEM can even observe the material Crystal surface and lattice information.3. Material Crystal Structure Test: (XRD) X-ray Diffraction TechnologyX-ray diffraction (XRD) technology. Through X-ray diffraction of the material, analysis of its diffraction pattern, to obtain the composition of the material, the internal atom or molecular structure or morphology of the material and other information research methods. X-ray diffraction analysis is the main method for studying the phase and crystal structure of a substance. When a substance (crystal or non-crystal) is subjected to diffraction analysis, the substance is irradiated with X-rays to produce different degrees of diffraction. The composition, crystal form, intramolecular bonding, molecular configuration, and conformation determine the production of the substance. Unique diffraction pattern. The X-ray diffraction method has the advantages of not damaging the sample, no pollution, rapidity, high measurement accuracy, and a large amount of information about the integrity of the crystal. Therefore, X-ray diffraction analysis as a modern scientific method for the analysis of material structure and composition has been widely used in research and production of various disciplines.Figure 3: (a) XRD spectrum of lithium-ion material; (b) Principle structure of X-ray diffractometer3.1 Principle of XRD: When X-ray diffraction is projected into a crystal as an electromagnetic wave, it will be scattered by atoms in the crystal. Scattered waves are emitted from the center of the atom. The scattered waves emitted from the center of each atom resemble the source spherical wave. Since the atoms are arranged periodically in the crystal, there is a fixed phase relationship between these scattered spherical waves, which will cause the spherical waves in some scattering directions to reinforce each other and cancel each other in some directions, resulting in diffraction phenomena. The arrangement of atoms inside each crystal is unique, so the corresponding diffraction pattern is unique, similar to human fingerprints, so that phase analysis can be performed. Among them, the distribution of diffraction lines in the diffraction pattern is determined by the size, shape, and orientation of the unit cell. The intensity of the diffraction lines is determined by the type of atoms and their position in the unit cell. By using the Bragg equation: 2dsinθ=nλ, we can obtain X-rays excited by different materials using fixed targets to generate characteristic signals at special θ-angles, ie characteristic peaks marked on the PDF card.3.2 XRD test features:The XRD diffractometer has a wide applicability and is usually used to measure powder, monocrystalline or polycrystalline bulk materials, and has the advantages of rapid detection, simple operation, and convenient data processing. It is a standard conscience product. Not only can be used to detect lithium materials, most crystal materials can use XRD to test its specific crystal form. Figure 3a shows the XRD spectrum corresponding to the lithium-ion material Co3O4. The crystal plane information of the material is marked on the figure according to the corresponding PDF card. The crystallization peak of the corresponding black block material in this figure is narrow and highly apparent, indicating that its crystallinity is very good.3.3 Test object and sample preparation requirements:Powder samples or flat samples with a smooth surface. Powder samples require grinding, the sample surface to be flattened, reducing the stress effect of the measured sample.4. Electrochemical Performance (CV) Cyclic Voltammetry and Cyclic Charge and DischargeLithium battery materials belong to the electrochemical range, so a corresponding series of electrochemical tests is essential.CV test: A commonly used electrochemical research method. The method controls the electrode potential at different rates and repeatedly scans with the triangular waveform one or more times over time. The potential range is to alternately generate different reduction and oxidation reactions on the electrode and record the current-potential curve. According to the shape of the curve, the degree of reversibility of the electrode reaction, the possibility of adsorption of the intermediate or phase boundary or the formation of a new phase, and the nature of the coupling chemical reaction can be judged. Commonly used to measure the electrode reaction parameters, determine the control steps and reaction mechanism, and observe what reaction can occur within the entire potential scan range, and how their nature. For a new electrochemical system, the preferred method of study is often cyclic voltammetry, which can be referred to as “electrochemical spectroscopy.” In addition to using mercury electrodes, this method can also use platinum, gold, glassy carbon, carbon fiber microelectrodes, and chemically modified electrodes.Cyclic voltammetry is a useful electrochemical method for the study of the nature, mechanism, and kinetic parameters of electrode processes. For a new electrochemical system, the preferred method of study is often cyclic voltammetry. Due to the large number of affected factors, this method is generally used for qualitative analysis and is rarely used for quantitative analysis.Figure 4: (a) CV cycle diagram of the reversible electrode; (b) Constant current cycle charging and discharging test of the batteryConstant Current Cycling Charging and Discharging Test: After the lithium battery is assembled into the corresponding battery, charge and discharge are required to test the cycle performance. The charge-discharge process often uses a galvanostatic charge-discharge method, discharges and charges at a fixed current density, limits voltage or specific capacity conditions, and performs cycle testing. There are two kinds of testers commonly used in laboratories: Wuhan Blue Power and Shenzhen Xinwei. After setting up a simple program, the cycle performance of the battery can be tested. Figure 4b is a cycle diagram of a group of lithium battery assembled batteries. We can see that the black bulk material can be circulated for 60 circles, and the red NS material can be circulated over 150 circles.Summary: There are many test techniques for lithium battery materials. The most common ones are the above-mentioned SEM, TEM, XRD, CV and cycle test. There are also Raman spectroscopy (Raman), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and energy spectrum analysis (EDS) of electron microscope attachments, electron energy loss spectroscopy (EELS) to determine the material particle size and porosity. Rate of BET surface area test. Even neutron diffraction and absorption spectroscopy (XAFS) can be used in some cases.In the past 30 years, the lithium battery industry has developed rapidly and gradually replaced traditional fuels such as coal and petroleum for use in automotive and other power equipment. The characterization and detection methods developed along with it have also continued to improve and promote progress in the field of lithium batteries.
出典:Meeyou Carbide

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項(xiàng)目です

国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 少妇被爽到高潮喷水在线播放-国产精品中文字幕在线不卡-中文字幕不卡一区二区三区-精品国产一二三区在线观看| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 色婷婷av一区二区三区网-日韩在线不卡一二视频-中文字幕乱码免费在线视频-黄片欧美免费在线观看| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 久久女人天堂精品av-韩国中文字幕三级精品久久-国产成人精品日本亚洲i8-免费黄色一级大片91| 亚洲精品一区网站在线观看-亚洲精品一区二区三区婷婷月-国产aⅴ精品一区二区三区久久-在线综合亚洲中文精品| 日本av自拍偷拍视频-日韩精品人妻一区二区三区-看片福利国产午夜三级看片-在线观看视频最新信息好幫手| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 亚洲av大片免费在线观看-97夫妻午夜精品在线-丰满人妻熟妇乱又伦精另类视频-国产男女啪啪视频观看| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 亚洲欧美日韩久久精品专区-99午夜福利一区二区-亚洲国产毛片一区二区三区-人妻自拍视频在线播放| 极品尤物高颜值女神露脸-免费视频一区二区三区美女-麻豆av国语对白麻豆-亚洲精品国产午夜精品| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 蜜桃视频大全免费观看-国产高清不卡一区二区-亚洲av综合av东京热三区-无套内射激情国产av| 少妇被躁潮到高潮无人码-日本欧美一级二级三级不卡-国产一区视频二区视频-亚洲无人区码一二三区别| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 午夜福利网午夜福利网-国产粉嫩学生在线观看-亚洲精品成人高清在线观看-亚洲人成人日韩中文字幕| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 精品国产成人亚洲午夜福利-午夜福利一区二区91-亚洲中文字幕女优最新网址-亚洲av成人国产精品| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 日本女同免费在线观看-在线视频成人国产自拍-日韩av在线观看大全-后入翘臀剧情片在线看|