色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

In recent years, the production technology of ultra-fine grain cemented carbide has developed rapidly, especially in the key technology of preparing ultra-fine grain WC powder, where the competition is very fierce. Many promising methods have emerged, some of which have reached the level of practical application. However, there are few reports in domestic literature, especially on basic theories or regularity research. In the process of developing the preparation technology of ultra-fine grain WC powder, this paper deeply investigates the influence of the particle size of carbon black powder on the carbon content of WC powder under different carbonization temperatures when using ultra-fine (0.35 μm) tungsten powder.

 

The Influence of Carbon Black Particle Size on the Carbon Content of WC Powder 2

Experimental Content and Method

Test Materials of WC powder

(1) Ultra-fine tungsten powder: The ultra-fine tungsten powder is prepared by the ultrasonic spray pyrolysis method from ultra-fine WO? powder, which is generally amorphous with an average particle size of 25~30 nm. It is reduced by hydrogen at a medium temperature (750~780℃) to obtain tungsten powder with an average particle size of ≤0.35μm (BET particle size).

(2) Carbon black powder: Carbon black powder is produced by two methods: one is by cracking ethane and propane (at 850℃) and then subjected to high-energy ball milling for different periods to produce carbon black powders with average particle sizes of 0.1 and 0.3 μm, respectively; the other is from activated carbon powder with an original particle size of 100~200μm, which is subjected to high-energy ball milling for different periods to produce carbon black powders with average particle sizes of 0.8 and 4.5 μm, respectively.

Experimental Method

Using ultra-fine tungsten powder with the same particle size (0.35 μm) and four different particle sizes (0.1, 0.3, 0.8, 4.5 μm) of carbon black powder, the carbon is blended according to the reaction formula W+C=WC (with an additional loss of 0.1%). The mixture is ball milled for 1.5 hours in a conventional ball mill with a ball-to-material ratio of 1:1. The heat-resistant stainless steel boat containing the mixed material is placed in a stainless steel tube furnace and carbonized under a hydrogen atmosphere. The holding time is 40 minutes for all. In the temperature range of 830~1300℃, the carbonized material is taken out at different temperatures, cooled, and then removed from the furnace. Subsequently, XRD phase analysis and chemical analysis are conducted to determine the total carbon and free carbon, and the amount of combined carbon in WC is calculated. Finally, the quantitative relationship between the particle size of carbon black powder and the phase composition and combined carbon content of WC powder under different carbonization temperatures can be plotted.

 

Test Results and Discussion

Figure 1 shows the effect of carbon black powder with different particle sizes carbonized at different temperatures on the combined carbon content of WC powder. Curve 1 in Figure 1 represents the relationship between carbonization temperature and the combined carbon content of WC powder when using ultra-fine carbon black powder with a particle size of 0.1 μm. As can be seen from Figure 1, when using 0.1 μm ultra-fine carbon black, the combined carbon content of WC powder can reach 5.8% (by mass), which is equivalent to 95% of the theoretical content, at a very low carbonization temperature (850℃). When the temperature is greater than 950℃, the carbon content of WC powder can reach the theoretical content. This result indicates that the carbonization reaction can be completed at a low temperature when using ultra-fine tungsten powder in conjunction with ultra-fine carbon black powder. This phenomenon suggests that the ultra-fine W powder particles are carbonized before they undergo significant aggregation and growth.

The Influence of Carbon Black Particle Size on the Carbon Content of WC Powder 3
At this temperature, as the particle size of the carbon black used increases, the combined carbon content in WC powder rapidly decreases. For example, as shown in Curve 2 of Figure 1, when using 0.3 μm carbon black at 950℃ with the same holding time of 40 minutes, the combined carbon content of WC powder only reaches 5.2% (by mass). XRD analysis indicates that there is still significant W?C in the WC powder, as shown in Figure 2. The free carbon phase was not detected due to its low content. The combined carbon content in WC powder can only reach the theoretical value when the temperature is increased to 1060℃. Its complete carbonization temperature is about 130℃ higher than that of the 0.1 μm carbon black.

カーボンブラック粒子サイズがWC粉末の炭素含有量に與える影響4

When using 0.8 μm carbon black, as shown in Curve 3 of Figure 1, at 950℃ with a holding time of 40 minutes, the combined carbon content of WC is only 3.18% (by mass). XRD analysis indicates that in addition to the obvious W?C phase, there is also significant free carbon present in the WC powder, as shown in Figure 3. The combined carbon content in WC powder can only reach the theoretical value when the carbonization temperature is increased to 1230℃. The temperature required for complete carbonization has increased significantly.
The reason for this phenomenon is that when the carbon content ratio is constant, the finer the carbon black particle size, the easier it is to mix uniformly with W powder particles, increasing the contact area between them. Undoubtedly, fine-grained carbon black will accelerate the carbonization rate. Moreover, the finer the carbon black particle size, the more its specific surface area and the number of active carbon atoms on the surface increase dramatically. Thus, the carbonization reaction rate between carbon and tungsten accelerates, and the complete carbonization temperature decreases with the decrease of carbon black particle size.

WC powder

Conclusions

(1) When the particle size of ultra-fine W powder is the same (≤0.35μm), the combined carbon content in WC powder decreases significantly with the increase of the carbon black particle size at a certain temperature.
(2) When the particle size of carbon black is constant, the content of combined carbon increases with the rise of carbonization temperature.

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項(xiàng)目です

a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| 欧美日韩国产激情综合-九九精品国产亚洲av日韩-国产午夜激情免费视频-日本厕所偷拍尿尿视频| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 午夜男女靠比视频免费-欧美激情影院狂野欧美-国语淫秽一区二区三区四区-国产成人av区一区二区三泡芙| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 亚洲精品中文综合第一页-91九色国产在线观看-小少妇特殊按摩高潮不止-沈阳老熟女多毛嗷嗷叫| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 亚洲免费看三级黄网站-日韩国产熟女免费精品老熟女视频-久青草视频免费在线播放-国产日韩精品久久一区二区| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 中文中国女厕偷拍视频-男人天堂亚洲天堂av-精品国产一区二区三区香蕉蜜臂-国产亚洲日本精品成人专区| 精品国产一区二区三区吸毒-国产精品一品二区精品网站-偷拍美国美女厕所撒尿-日韩精品在线视频一二三| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 精品国产自产在线观看-四虎av一区二区在线观看-91久久精品人妻中文字幕-av网页一区二区三区| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 老妇肥熟凸凹丰满刺激-九九热最新视频免费看-亚洲中文字幕乱码视频-国产亚洲精品欧洲在线视频| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 91精品国产免费人成网站-91国产小视频在线看-亚洲宅男一区二区三区天堂-成人午夜精品免费观看|