色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

WC-Co carbide coal mining bits are vulnerable components in coal mining and excavation machinery. They consist of a low-carbide?steel body that has been quenched and tempered, with WC-Co carbide inserts embedded or brazed onto it. The performance of these bits directly affects coal production capacity, power consumption, excavation performance, and excavation costs, making them a critical factor in economic mining.

During coal cutting, mining bits rotate and cut under high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, and intense frictional heat generated by the contact with coal rock. The cutting edge can reach a temperature of 600-800℃, resulting in significant thermal stresses, as well as other mechanical behaviors such as contact fatigue and even fracture. Under such complex working conditions, mining bits are prone to failure. To effectively extend the service life of these bits and reduce coal mining costs, it is crucial to identify their main failure modes and causes by conducting failure analysis.

超硬採炭ビットの 3 つの主な故障モードとは? 2

1Failure modes

Carbide coal mining bits are subjected to high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, thermal stresses, wear, and other effects during coal cutting. Although coal is not particularly hard, they often encounter harder minerals such as quartz and gangue during operation, resulting in failures such as carbide fracture, wear, and breakage.

2 Failure analysis

2.1 Fracture of coal mining bits

During coal cutting, the carbide tooth is exposed to high compressive stress and impact load, leading to poor contact with the coal seam. The stresses can cause impact fatigue, resulting in cracks and the falling off of large pieces. Fracture occurs when the stress exceeds the bending strength limit of the carbide. In addition, during the cutting process, the temperature of the tooth head rapidly increases due to friction, while it rapidly decreases during idle rotation. This process subjects the carbide tooth to periodic tensile-compressive thermal stress, and with the cyclic action of this stress, thermal fatigue cracks will be produced, leading to the fracture of the mining bits. The insufficient bending strength of the carbide is the main cause of fracture, and micro-defects can also produce stress concentration areas leading to fracture.

 

2.2 Wear of coal mining bits

During the process of coal cutting, the coal mining bits?come into direct contact with coal and rock, which results in mutual abrasion. Due to the existence of impurities such as quartz and coal gangue with strong wear resistance in the coal seam, impact fatigue and abrasive cutting will occur, which will cause abrasive wear failure to the cutting teeth. When the coal mining machine coal mining bits?cut through the coal seam, friction generates heat, resulting in a high temperature of 600-800℃ on the surface of the coal mining bits. The temperature rises and falls alternately, which makes the mining cutting teeth suffer from thermal fatigue wear. Meanwhile, under the alternating impact load, the surface of the coal mining bits?will deform and gradually form microscopic cracks. The cracks will continuously expand under periodic impact loads, and the surface cobalt phase will be preferentially consumed. The WC particles will detach due to the loss of the cobalt phase’s bonding effect, eventually resulting in large-scale peeling of the carbide?particles. In addition, there will also be phenomena of large WC particles breaking and losing during the coal cutting process.

2.3 Fracture of coal mining bits

Hard coal mining bits?contain certain inherent defects such as pores, cobalt pools, surface microcracks, and coarse WC particles, which can cause stress concentration and become the fracture source of the carbide. During the coal mining process, due to repeated impacts, extrusions, and wear, the cobalt phase is preferentially squeezed out and lost. The bonding between the WC particles that are bonded together by the cobalt phase’s bonding effect is destroyed, and the WC particles detach. At the same time, at the site where the WC particles are broken and detached due to the impact load, stress concentration will also occur, which is prone to induce the formation and extension of cracks.

3Measures to Improve the Performance of coal mining bits

Based on the analysis of the article, the main reasons for the failure of cemented coal mining bits?are:

  1. The bending strength of the carbideis not enough, and the instantaneous impact load during work can easily reach or even exceed the bending strength value of the carbide.
  2. Quartz and gangue in the coal seam cause wear on the carbide.
  3. Fatigue cracks caused by periodic and sudden impact loads and frictional heat generated by severe friction between the coal mining bitsand the coal seam.

Therefore, in order to improve the efficiency of using cemented coal mining bits, efforts should be made to improve the bending strength, wear resistance, and fatigue resistance of the carbide?in the preparation stage. At the same time, the cooling force of the teeth should be increased during use to reduce the hot and cold cycles of the coal mining bits?and prolong their service life.

3.1 Improve the strength and toughness of coal mining bits

Porosity, WC grain size and distribution, and density differences between the upper and lower parts of cemented carbide are the main factors affecting bending strength and toughness. Currently, people mainly use methods such as preparing non-uniform structure cemented carbide, using coarse-grained ore, gradient structure cemented carbide, adding trace elements to modify the bonding phase, and using new molding and sintering processes to improve the strength and toughness of cemented carbide, thereby prolonging the service life of the carbide. The engineers of Metallurgical Ultra Hard Materials Co., Ltd. believe that, under the premise of appropriately reducing the cobalt content of the carbide, cemented carbide with an average grain size of 5.8 μm WC should be produced. By comparing with ordinary cemented carbide, it is found that the bending strength and toughness of the cemented coal mining bits?produced using coarse-grained WC and low Co content have been improved. In other words, while the coarse-grained carbide?has high wear resistance, its strength and toughness have also been improved.

3.2 Improve the wear resistance of coal mining bits

The wear resistance of cemented carbide is determined by the microstructure and chemical composition of the carbide. Currently, in order to ensure that cemented carbide cutting teeth have good strength and toughness, the cobalt content of the cemented carbide carbide?is generally high. People mainly study the microstructure of cemented carbide, adjust the chemical composition of the carbide, and control the mechanical and physical properties of the carbide?(such as strength, hardness, toughness, etc.) to improve the wear resistance of the carbide. An article pointed out that the wear resistance of the carbide?can be effectively improved by minimizing the occurrence and growth of carbide?defects and adding an appropriate amount of rare earth elements.

failure of carbide coal mining bits

3.3 Improve the fatigue resistance of coal mining bits

Cobalt content and WC grain size are the main factors affecting the fatigue resistance of cemented carbide. The production and expansion depth and speed of thermal fatigue cracks gradually decrease with the increase of cobalt content or WC grain size in the carbide. In addition, the increase in WC grain size will also increase the average free path of the cobalt phase, thereby improving the fatigue resistance of the carbide.

結(jié)論

Metyou Carbide Co., Ltd. has conducted a failure analysis on the used carbide coal-cutting teeth recovered from customers and reached the following conclusions:

1)the main forms of carbide coal-cutting teeth failure are fracture, wear, and breakage.

2) the main causes of coal mining bits?failure are insufficient bending strength, poor wear resistance, and poor fatigue resistance of the carbide.

3) the service life of carbide coal-cutting teeth can be improved by means of improving the purity of raw materials, changing the carbide?composition, optimizing the forming and sintering process, controlling the grain size of the carbide, and conducting heat treatment on the carbide.

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 国产亚洲欧美日韩俺去啦-91香蕉国产极品在线播放-国产夫妻生活自拍视频-永久免费的成年视频网| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线| 欧美精品一区二区三区三州-少妇被五个黑人玩的在线视频-国产亚洲精品a久久7777-亚洲av色香蕉一区二区精品国产| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 精品国产自产在线观看-四虎av一区二区在线观看-91久久精品人妻中文字幕-av网页一区二区三区| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 亚洲不卡福利在线视频-亚洲一级特大黄色小视频-日本久久一级二级三级-国产精品剧情av在线观看| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久|