色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The new generation of in cylinder direct injection technology is the mainstream technology in the field of automobile engine. It accurately injects fuel into the cylinder through the fuel injector and fully mixes with the intake air to give full function to the effect of each drop of fuel.

As can be seen from the figure below, there are micro pores distributed on the injector, the diameter of which is less than 150 microns. Hole diameter, surface roughness, position, shape and so on will directly affect the performance of the injector, so there are strict processing requirements. At the same time, in order to achieve cost-effectiveness, the processing time of each micro hole is required to be controlled within a few seconds.

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 1

So the problem is that the processing requirements of injector micro holes are far beyond the capacity of traditional mechanical drilling technology. What process is used to accurately process these micro holes?

Traditional processing method vs innovative micro hole processing technology

At present, the common micro hole machining methods of injector mainly include mechanical drilling, EDM and femtosecond laser machining.

The cost of mechanical drilling is the highest. Because the tool for drilling small holes is expensive, easy to wear in the process of machining, and the tool has fracture risk, which directly affects the consistency of micro hole processing and product yield, and the cost of consumables is high.

Although EDM is a little more flexible than mechanical drilling in size, its machining efficiency is low and the surface roughness is not ideal. Especially, there will be remelting layer on the machined surface. At the same time, we must also consider the electrode cost and the stability of the process.

However, femtosecond laser can not produce heat in the processing process, and the micro hole processed by femtosecond laser has no remelting layer and burr, which can obtain clearer sharp edge and better surface quality, thus prolonging the nozzle life.

Taking a hole with a diameter of 150 μ m and a depth of 0.5 mm as an example, the machining results of EDM and femtosecond laser are compared

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 2
What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 3

The left side of the figure shows the micro hole machined by EDM and the right side shows the micro hole machined by femtosecond laser

It is worth mentioning that we are not unfamiliar with laser processing. So, what’s the difference between femtosecond laser and nanosecond laser and picosecond laser we often hear?

Let’s make clear the time unit conversion first

1ms =0.001s=10-3S&nbSp;

1μs=0.000001s=10-6S?

1ns=0.0000000001s=10-9S

1ps =0.0000000000001s=10-12S

1fs =0.000000000000001s=10-15S

If we understand the time unit, we will know that femtosecond laser is an extremely short pulse laser processing, so only it can really be competent for high-precision processing.

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 4

There?are nanosecond laser drilling?hole, picosecond laser drilling hole and femtosecond laser drilling holes

Working mechanism of femtosecond laser

When femtosecond laser acts on metal and nonmetal processing, the principle is completely different. There are a large number of free electrons on the metal surface. When the laser irradiates the metal surface, the free electrons will be instantly heated, and the electrons will collide in tens of flying seconds. The free electrons will transmit energy to the crystal lattice and form holes. However, the energy of free electron collision is much smaller than that of ions, so it takes a long time to conduct energy. However, this problem has been solved by Chinese scientists.

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 5

When femtosecond laser acts on non-metallic materials, because there are few free electrons on the surface of the materials, the surface of the materials should be ionized before the laser irradiation, and then free electrons are generated. The remaining links are consistent with the metal materials. When femtosecond laser is used to process micro holes, a small pit is formed at the initial stage. With the increase of the number of pulses, the depth of the pit increases. However, with the increase of the depth, it is more and more difficult for the debris to fly out of the pit bottom. As a result, the energy of laser propagation to the bottom is less and less, and the saturation state of the depth can not be increased, that is to say, a micro hole is drilled.

Application of new femtosecond laser technology

The application of femtosecond laser new technology is just emerging. The main application industries include: semiconductor industry, solar energy industry (especially thin film technology), planar display industry, alloy micro casting, precision aperture and electrode structure processing, aviation difficult material processing, medical equipment and other fields!

Under the background of made in China 2025, the traditional industrial manufacturing industry is facing deep transformation. One of the directions is to improve the efficiency and turn to high-end precision processing with higher added value and higher technical barriers. Laser processing is fully in line with this theme. Lasers and laser processing equipment have emerged in high-end 3C manufacturing fields such as consumer electronic touch screen module production, semiconductor wafer dicing, etc., and show new application prospects in sapphire processing, curved glass and ceramic production.

3C industry

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 6

As a typical representative of ultrashort pulse laser, femtosecond laser has the characteristics of ultra short pulse width and ultra-high peak power. It has a wide range of processing objects, especially suitable for processing brittle materials and heat sensitive materials such as sapphire, glass, ceramics, etc., so it is suitable for micro processing industry in electronic industry.

The main reason is that the application of fingerprint identification module in mobile phones since last year has led to the purchase of femtosecond laser. Fingerprint module involves laser processing: ① wafer dicing, ② chip cutting, ③ cover cutting, ④ FPC soft board contour cutting and drilling, ⑤ laser marking, etc. Among them, Sapphire / glass cover plate and IC chip are mainly processed. Apple 6 has officially used fingerprint identification since 2015, and has promoted the popularity of a number of domestic brands. At present, the penetration rate of fingerprint identification is less than 50%. Therefore, there is still a large development space for laser machine used to process fingerprint identification module.

At the same time, the laser machine can also be used in PCB drilling, wafer dicing cutting, etc., and the application field is constantly expanding. Especially with the application of high value-added brittle materials such as sapphire and ceramics in mobile phones in the future, laser processing equipment will become an important part of 3C automation equipment. We believe that femtosecond laser will play a broad and profound role in the field of 3C automatic processing equipment in the future.

aircraft engine

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 7

For a long time, China’s engine manufacturing technology has always been a bottleneck restricting the development of aerospace industry. The quality of products is not up to standard from two aspects: one is material technology; the other is material processing technology. Femtosecond laser drilling solves this problem!

In the field of aerospace, gas turbine is the first of the three key components of the engine, and its performance directly determines the quality of the engine. However, the working temperature of turbine blade of aero-engine is at least 1400 ℃, so it is necessary to use accurate cooling technology for high-temperature parts, especially blades.

Blade cooling is usually achieved by a large number of film holes with different diameters. The hole diameter is about 100 ~ 700 μ m, and the spatial distribution is complex. Most of them are inclined holes with angles ranging from 15 ° to 90 °. In order to improve the cooling efficiency, the shape of the holes is often fan-shaped or rectangular, which brings great difficulty to the machining. At present, the mainstream method is high-speed EDM, but the tool electrode manufacturing is extremely difficult, the processed parts are easy to wear, the processing speed is slow, it is difficult to remove the machining chips in the hole, it is not easy to heat dissipation, so it is not suitable for mass production.

In addition, the surface of modern engine blade is usually covered with a layer of thermal barrier coating, which is usually ceramic material, which can not be machined by traditional EDM, which is the key technology of advanced engine manufacturing in the future. With the development of non metallization of engine blade materials, EDM is more unreliable. Femtosecond laser machining has many advantages, such as wide adaptability, high positioning accuracy, no mechanical deformation, no direct contact and so on. It is very suitable for machining micro holes.

medical care

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 8

At present, all femtosecond laser used in ophthalmic refractive treatment should be one of the most mature devices in medical application of femtosecond technology. There are also expander, endoscope and catheter processing and so on.

In medical treatment, compared with long pulse laser, femtosecond laser energy is highly concentrated, there is almost no heat transfer effect during the action, so it will not cause the temperature rise of the surrounding environment, which is very important in the medical application of laser surgery. On the one hand, several degrees of temperature rise will become pressure waves in an instant and transmit to nerve cells to produce pain. On the other hand, it may cause fatal damage to biological tissues. Therefore, femtosecond laser can achieve painless and non-invasive safe treatment.

Breakthrough in femtosecond laser drilling technology

Although femtosecond laser drilling technology has such magic power, its development is also very difficult, especially in the efforts of system integration and technology engineering, there are various difficulties, and the output power is also limited. In addition, how to form a complete set of microporous processing industry is also a worldwide problem. However, through the efforts of Chinese scientists, we have not only realized the practicality and integration of the system, but also invented the screw processing technology, which can be privately customized with different shapes of micropores, which can be said to be in the leading position in the world.

Nowadays, with the gradual upgrading of emission standards in the automotive industry at home and abroad, the challenges for injector manufacturers and their OEMs are becoming more and more serious. The traditional round holes can not meet the needs of customers. Manufacturers are constantly seeking and developing special and novel nozzle shapes to meet the requirements. The flexibility and advantages of femtosecond laser processing are becoming more and more obvious.

What Method is Efficient and Reliable for Micro Machining Less than 150 μm? 9

Special and novel spray hole shapes

亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 国产精品毛片二区视频播-尤物视频在线看免费观看-亚洲中文字幕亚洲中文字幕-日本黄色成人福利网站| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 国产91精品一区二区亚洲-国产精品国产三级国产播-久久国产精品免费一区六九堂-五月婷婷六月丁香激情网| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 成人在线自拍偷拍视频-国产剧情av中文字幕-久久国产劲爆内射日本-劲爆欧美中文字幕精品视频| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 最新国产精品欧美日韩-日韩孕妇孕交在线视频-亚洲欧美日韩国产成人在线-欧美老熟妇性视频在线观看| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 国产亚洲欧美日韩俺去啦-91香蕉国产极品在线播放-国产夫妻生活自拍视频-永久免费的成年视频网| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 尤物视频在线观看精品-日韩午夜男女爽爽影院-日本少妇下面好紧水多影片-国产亚洲精品视频在线网| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 久久av这里只有精品-国产三级视频不卡在线观看-精品亚洲综合久久中文字幕-在线观看日韩av系列| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡|