色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

1. CVD Diamond Introduction

Chemical Vapor Deposition (CVD) diamond refers to the use of CVD method, under low pressure conditions, with carbon-containing gases such as H2 and CH4 as the reaction gas, chemical reactions under plasma-assisted and certain temperature conditions, resulting in solid particle deposition Diamond obtained on the heated substrate surface. Similar to natural diamond, CVD diamond is a crystal of a single carbon atom and belongs to a cubic system. Each C atom in the crystal forms a covalent bond with sp 4 hybrid orbital and another 4 C atoms, and has strong binding force and stability. Nature and directionality; the bond length and bond angle between C atoms and C atoms are equal, and they are arranged in an ideal spatial network structure, making CVD diamonds exhibit comparable mechanical, thermal, optical, and electrical properties of natural diamonds. Comprehensive performance
As we all know, natural diamond reserves in the natural world, mining costs are high, the price is expensive, it is difficult to widely promote the application in the industrial field. Therefore, the synthesis of diamond by artificial methods such as high temperature and high pressure (HTHP) and CVD has gradually become the main way for people to obtain such excellent materials with excellent properties. Diamond products synthesized by HTHP method are generally in the state of discrete single-crystal particles. Although HTHP method has been able to synthesize large single crystals with diameters larger than 10 mm with the development of science and technology, the current products are still mostly single crystals with a diameter of 5 mm or less. And mainly diamond powder. In contrast, the size of the diamond single crystal synthesized by the CVD method is determined by the size of the seed crystal, and a larger-sized diamond single crystal can also be obtained by using multiple growth and “mosaic” growth methods. In addition, the CVD method can also be used to prepare large-area diamond self-supporting films by heteroepitaxial deposition or to coat diamonds on the surface of various complex shapes to form a wear-resistant or protective coating, which greatly expands the application of diamond. It can be seen that CVD diamond has a very wide range of application prospects in many fields such as machining, defense and nuclear industry. Among them, the application in the machining industry mainly includes grinding wheel dressers, trimming pens, various cutting tools, etc. When used in these aspects, only the hardness, wear resistance, and chemical stability of the diamond are involved, and transparency is not required. The properties such as dielectric loss and product preparation are relatively easy, so the application on the tool is the main field of large-scale industrial application of CVD diamond.

2. CVD Diamond Coated Carbide Tools

Diamond cutters currently on the market mainly include single crystal diamond tools, polycrystalline diamond (PCD) tools, diamond thick film welding tools, and diamond coated tools. The latter two are applications of CVD diamond as a tool. Among them, the diamond thick film welding tool is generally prepared by cutting a CVD self-supporting diamond thick film with a thickness of 0.3 mm or more and then welding it onto a substrate. Because diamond thick films can be cut into any two-dimensional shape, they are less expensive and more flexible than single-crystal tools. In addition, Co-bonds are not included in diamond thick films compared to PCD tools. High machining accuracy and high wear ratio.
For diamond-coated tools, the CVD method is used to apply a diamond coating less than 30 μm thick on the surface of the tool body. Compared with the other three tools, the CVD method can apply diamond to tools with complex shapes including various drills, milling cutters, etc.; and since the diamond coating is thin and the deposition time is short, the coated tool does not need to follow up. Processing, so the cost is low.
Therefore, the current tool market analysis generally believes that CVD diamond-coated tools will be one of the most important development directions of the tool industry. Of the many tool materials, WC-Co cemented carbide is the most widely used. It not only has high hardness, excellent thermal stability, but also has high strength and good toughness. It is the ideal diamond coating. Layer tool base material. The CVD diamond-coated CVD diamond-coated carbide cutting tools prepared from CVD diamond on the surface of WC-Co cemented carbide can perfectly combine diamond’s excellent wear resistance, heat dissipation, and good toughness of cemented carbide. Effectively solve the contradiction between the hardness and toughness of existing tool materials, and greatly improve the cutting performance and service life of carbide tools. In the non-ferrous metal and its alloys, various particles or fiber reinforced composite materials, high-performance ceramics and other materials processing The field has a broad application prospects.

What Is Diamond Coated Carbide? 1

Fig. 1 Cutting edges of (a) the uncoated tool and (b) diamond coated tool after cutting tests

What Is Diamond Coated Carbide? 2

Fig. 2 Representative end milled channels in Al alloy after being cut by (a) uncoated tool and (b) diamond coated tool
In summary, diamond-coated carbide tools exhibit excellent performance in terms of turning, milling, and drilling. For example, the wear of the cutting edge is small, the service life is long, and the machining is not “sticking” and High processing accuracy. Therefore, compared with other tools, diamond-coated carbide tools can better meet the processing requirements of current new materials and ultra-precision cutting.

3. Problems and Solutions of CVD Diamond Coated Carbide Tools

Although a large number of research results have shown that CVD diamond coated carbide tools have excellent performance and long service life, there are also reports of successful production trials by some manufacturers at home and abroad. But so far, this tool has not been applied in large-scale industrial production. The main reason is that currently produced diamond-coated tools still have problems such as low bonding strength between the coating and the substrate, large surface roughness of the diamond coating, and poor quality stability. Among them, the low bond strength of the coating is a key technical obstacle that limits the large-scale application of this tool.
The primary reason for the low bonding strength of diamond coatings is the presence of Co-bonded phases in cemented carbide substrates. At CVD diamond deposition temperatures (600 ~ 1200 °C), Co has a high saturation vapor pressure, will rapidly diffuse to the substrate surface, inhibit diamond nucleation and growth, and catalyze the formation of graphite and amorphous carbon, leading to diamond coating and The bond strength between cemented carbide substrates is reduced. In addition, the difference in physical properties such as lattice constant, hardness, and coefficient of thermal expansion (CTE) between diamond and cemented carbide materials is also a major cause of the low bonding strength of the coating.
Diamond is a face-centered cubic crystal with a lattice constant a0 = 0.35667 nm, a hardness of 60 ~ 100 GPa, and a CTE of 0.8 ~ 4.5 × 10-6 /°C. The cemented carbide consists mainly of WC particles and a Co binder. WC For the close-packed hexagonal crystal structure, the lattice constant a = 0.30008 nm, c = 0.47357 nm, the hardness of the cemented carbide is approximately 17 GPa, and the CTE is approximately 4.6×10-6 /°C. These differences will result in diamond coating and The thermal stress at the interface of the cemented carbide substrate is not conducive to the adhesion of the diamond coating on the cemented carbide substrate.
A large number of studies have shown that pretreatment of the surface of the cemented carbide substrate to reduce the adverse effect of the Co binder on the deposition of the diamond coating is the most effective method for improving the bonding strength of the diamond coating/cemented carbide substrate. The current major pretreatment methods include:

(1) Surface Removal Co Treatment

This method usually adopts physical or chemical means to remove the Co of the surface layer of WC-Co so as to suppress or eliminate its negative influence and improve the bonding strength between the diamond coating and the substrate. Among them, the most widely used in the industry is the “acid-base two-step method”, which uses the Murakami solution (1:1:10 KOH+K3[Fe(CN)6]+H2O) to corrode the WC particles and roughen the hard alloy. The surface was then etched using Caro acid solution (H2SO4 + H2O2) to remove the surface Co. This method can inhibit the negative catalytic effect of Co to a certain extent and improve the bonding strength of the diamond coating. However, after processing, it will form a loose zone near the substrate near the surface layer, reduce the fracture strength of the coated tool, and the Co The higher the content of the binder, the more severe the impact on the tool performance.

(2) Apply a transition layer method

The method is to prepare one or more layers of transition layers between the diamond coating and the cemented carbide substrate for blocking out diffusion of Co and suppressing its negative catalytic effect on diamond deposition. Through reasonable material selection and design, the prepared transition layer can also reduce the abrupt change of the physical properties of the interface, and reduce the thermal stress caused by the differences in physical properties such as CTE between the coating and the substrate. The application of the transition layer method generally does not cause damage to the surface layer of the substrate, nor does it affect the mechanical properties such as the fracture strength of the coating tool, and it can prepare CVD diamond coatings on high Co content cemented carbides, and therefore is currently researching and improving WC- The preferred method of bonding the diamond coating on the Co substrate surface.

4. Selection of transition layers and preparation methods

According to the previous analysis, the application of the transition layer method can effectively suppress the negative catalytic effect of Co, and will not damage the matrix. However, to effectively achieve the function of increasing the bonding strength of the diamond coating, the material selection and preparation method of the transition layer is very important. The selection of transition layer materials generally requires following several principles:

(1) It has good thermal stability.

The deposition temperature of the diamond coating is generally 600 ~ 1200 °C, the transition layer material can withstand higher temperatures, does not occur softening and melting;
(2) Hardness and CTE properties are best placed between diamond and cemented carbide to reduce the thermal stress caused by mismatching performance;
(3) Prevents Co from migrating to the surface during diamond deposition or reacts with Co to form stable compounds;
(4) It has good compatibility with diamond materials. Diamond can nucleate and grow on the surface of the transition layer. In the nucleation stage, diamond can rapidly nucleate and have a high nucleation rate.
(5) The chemical properties are stable and have a certain mechanical strength, so as to avoid the formation of a soft intermediate layer and adversely affect the performance of the coating system.
At present, people study and use more transition layers mainly include metals, metal carbon/nitrides, and composite transition layers composed of them. Among them, Cr, Nb, Ta, Ti, Al and Cu are generally used as the transition layer materials for the metal transition layer, and the PVD, electroplating, and electroless plating are commonly used as the preparation methods, and the PVD method is most widely used. The results show that the transition layer formed by the carbon-philic metal is more effective in improving the bonding strength of the diamond coating than the weak carbon metal. In the initial stage of diamond deposition, a layer of carbide is first formed on the surface of the metal layer, and this layer of carbide facilitates the nucleation and growth of the diamond. However, the metal transition layer has a large CTE and a high requirement for the thickness. If it is too thick, it will lead to an increase in thermal stress, decrease the bonding strength, and be too thin to completely block the outward diffusion of Co. In addition, the metal transition layer is relatively soft, which is equivalent to adding a soft layer in the middle of the hard phase, which is not conducive to the matching degree of the coating system performance.
The hardness of the carbon/nitride transition layer is higher than that of the pure metal, and there is no problem of reducing the use performance of the coated tool. WC, TiC, TaC, TaN, CrN, TiN, and SiC are currently the most studied and used transition layer compounds. Such transition layers are generally prepared by reactive magnetron sputtering and other methods. Studies have shown that the carbon/nitride transition layer can effectively block the out-diffusion of Co, and thus can improve the bonding strength of the diamond coating to some extent. The degree of improvement of bonding strength of such transition layers generally depends on the matching of the CTE of the transition layer with the matrix and the diamond, the structure of the transition layer, and the wettability of the transition layer material and the diamond.
Common metal carbides have a lower CTE than metal nitrides, and when carbide transition layers are used, diamonds can be nucleated directly on the transition layer, which shortens the nucleation time compared to metal transition layers and nitride transition layers. From this we can see that carbides are one of the more ideal transition layer materials. Among these metal carbide materials, HfC, NbC, Ta C, and the like have a relatively low CTE. In addition, the non-metallic carbide SiC has the lowest CTE in all carbides (β-SiCCTE = 3.8×10-6/°C), which is between the cemented carbide and diamond. Therefore, there are many studies on the SiC transition layer. For example, Cabral G and Hei Hongjun used CVD method to prepare SiC transition layer on the surface of cemented carbide for deposition of diamond coating. The results show that SiC transition layer can effectively enhance the bonding between diamond coating and cemented carbide substrate.
Intensity, but the CVD method directly prepared SiC coating on the surface of the cemented carbide, the content of Co binder phase in the cemented carbide substrate is not easy to be too high (generally <6%), and the deposition temperature needs to be controlled in a low range (generally 800 °C or so). This is mainly due to the fact that the catalytic action of the Co-binder phase is significant at high temperatures, resulting in the formation of SiC whiskers, and there is a large amount of voids between the whiskers and cannot be used as a transition layer. However, at low deposition temperatures, loose amorphous SiC coatings are prone to occur. Therefore, a deposition temperature range that is dense, continuous, and satisfies the use as a buffer layer of the SiC coating layer is made smaller. Therefore, when some researchers use SiC as a transition layer, in order to obtain high bonding strength, it is necessary to first use etching to remove Co in the hard alloy layer. Therefore, the catalytic action of Co has become one of the key factors limiting the use of SiC as a transition layer.
The composite transition layer is generally a multi-layer coating composed of a combination of two or more kinds of metal or metal carbon/nitride materials. At present, there are many composite transition layers including W/Al, W/WC, CrN/Cr, and ZrN/. Mo, TaN-Mo, and 9x (TaN/ZrN)/TaN/Mo, etc., are also mostly PVD or CVD methods. Such transition layers generally include a Co diffusion barrier layer and diamond-like nucleation promoting layer, that is, the functional requirements of the transition layer are fully satisfied by using a reasonable multilayer material. Compared with the single metal transition layer and the carbon/nitride transition layer, the composite transition layer is more conducive to improving the bonding strength between the diamond coating and the cemented carbide substrate. However, in order to obtain a composite transition layer with excellent performance, it is generally necessary to perform reasonable material selection and design. Otherwise, the expected effect may not be achieved because of large differences in the physical properties of the materials or the increased number of interfaces.
From the perspective of the preparation method of the transition layer, currently, researchers mostly use physical vapor deposition (PVD), electroplating, electroless plating, and CVD to prepare the transition layer. The obtained transition layer and the matrix are usually physically bound or only existed. A nanometer-thick diffusion layer, which adds one or more new interfaces between the diamond coating/cement substrate. A sudden change in physical properties such as CTE and hardness between the transition layer material and WC-Co will also cause interfacial stress problems, and this interfacial stress will increase with the increase of the thickness of the transition layer and the number of transition layers, affecting to some extent. Increased bonding strength. Furthermore, apart from SiC, there are still large differences in properties such as CTE and hardness between other transition layer materials and diamonds, which is not conducive to the improvement of bonding strength. Therefore, to explore a new preparation method of the transition layer, to obtain a transition layer with a gradient of composition and composition, and to avoid the interface stress caused by the new interface, it is particularly important to enhance the bonding strength of the diamond coating.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 青青青视频蜜桃一区二区-粗大挺进人妻中文字幕-国产小视频在线看不卡-国产精品一区免费在线观看| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看| 日本高清不卡一区二区三区-男女国产猛烈无遮挡色-精品九九热在线免费视频-日本一区二区福利在线观看| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 狠狠做深爱婷婷丁香综合-成人日韩亚洲在线观看-蜜桃传媒mv在线免费-国产日韩入口一区二区| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 国产精品色哟哟在线观看-亚洲精品国产自在现线-国产成人精品免费播放视频不卡-国产精品高潮呻吟av久久黄| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 少妇一级aa一区二区三区片-欧美欧美欧美欧美一级片-91在线观看视频下载-自拍视频在线观看一区二区| 日韩人妻一区二区三区免费-日韩午夜精品中文字幕-国产三级精品大乳人妇-一级女性全黄久久生活片免费| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 亚洲丁香婷婷久久一区二区-少妇高潮乱语对白自拍-99偷拍在线视频精品-天堂精品中文字幕在线| 国产免费不卡一区二区-亚洲中文日韩一区二区三区-狂干亚洲老熟女性视频-亚洲精品午夜福利久久| 成人在线自拍偷拍视频-国产剧情av中文字幕-久久国产劲爆内射日本-劲爆欧美中文字幕精品视频| 毛片内射免费夫妻内射-蜜臀av人妻中文字幕-插胃管的注意事项及护理要点-青青草视频精品在线播放| 久久综合九色综合久久-在线看日韩欧美中文字幕-国产成人亚洲精品青草天美-91亚洲中文天堂在线观看| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频|