色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

As we all know, phase diagrams can be tested experimentally. However, experimental phase diagrams require a lot of manpower and material resources. Under the conditions of high temperature, high pressure, and corrosive gases involved in the reaction, they will also face difficulties in composition control, container selection, and high temperature measurement, and the experimental determination is always Limited, one-sided, unable to make a complete and comprehensive understanding of the phase diagram and thermodynamic properties of the system.Figure 1: Fe-C phase diagramThen, the phase diagram calculation is a convenient solution. He calculated the phase equilibrium of the system by using thermodynamic principles and plotted the phase diagram.After the phase diagram calculation is introduced, only the thermodynamic data of some key regions and some key phases of the phase diagram of the system can be experimentally measured to optimize the parameters of the Gibbs free energy model, and the whole phase diagram can be extrapolated to build the system. Complete phase diagram thermodynamic database. As a result, the workload of the phase diagram study is greatly reduced, and it is possible to avoid possible experimental difficulties.In simple terms, phase diagram calculations can have 6 important advantages or meanings(1) It can be used to distinguish actual phase diagram data and thermochemical data itself and their consistency, so as to make reasonable evaluation of different experimental results obtained, and to provide users with accurate and reliable phase diagram information;(2) The metastable part of the phase diagram can be extrapolated and predicted to obtain a metastable phase diagram;(3) It can extrapolate and predict multi-phase diagrams, calculate multi-phase balance, and provide reference for the design of actual materials and processing technology;(4) By calculating the Gibbs free energy curve, the component range of the diffusion-free phase transition can be predicted;(5) It can provide important information such as phase change driving force and activity required for phase transition kinetics research;(6) It is convenient to obtain various phase diagrams with different thermodynamic variables as coordinates for the study and control of material preparation and use processes under different conditions.So, why can we get the phase diagram by calculating the phase diagram?The essence of the phase diagram calculation is to establish the thermodynamic models of each phase according to the crystal structure, magnetic order, and chemical order transition of each phase in the target system, and to construct the Gibbs free energy expression of each phase from these models. Finally, the phase diagram is calculated by the equilibrium condition. Among them, the undetermined parameters in each phase thermodynamic model are obtained based on phase balance and thermodynamic property data reported in the literature and optimized by means of phase diagram calculation software. Based on the obtained thermodynamic parameters of low component systems (generally binary and ternary systems), the phase diagram and thermodynamic information of the multicomponent system can be obtained by extrapolation or by adding a small number of multivariate parameters.In general, we control the temperature, pressure, and composition during the material processing. Therefore, we choose the Gibbs free energy as a model function in the calculation of the phase diagram.For a system with a certain material but energy exchange with the outside world (closed system), the constant temperature and pressure process is always in the direction of Gibbs free energy reduction, and the total Gibbs free energy of the system is the lowest in equilibrium. The chemical positions of the constituent elements in the phases are equal. If we know the free energy-composition curve at all temperatures, we can calculate the phase diagram by finding the minimum free energy or equivalent solution chemical bit.In order to calculate the phase diagram we need to know the metastable part of the free energy curve, the free energy of the metastable configuration of the pure element and the metastable phase transition point.The phase diagram optimization and calculation process can be simply divided into five steps:(1) Collection and evaluation of experimental data. The purpose of the assessment is to judge the accuracy of the experimental data based on the experimental methods used by the authors, and to select experimental data that are consistent with thermodynamic principles and are relatively more reasonable.(2) Selection of free energy model. According to the structure of the phase, a reasonable model is selected and can be verified by extrapolating the multivariate system.(3) Using the measured phase diagrams and thermochemical data to optimize the undetermined parameters in the Gibbs free energy expression; then use the appropriate algorithm and the corresponding computer program to calculate the phase diagram on the computer according to the phase equilibrium conditions.(4) Comparison and analysis of calculation results and experimental data. If there is a large difference between the two, adjust the parameters to be determined or reselect the thermodynamic model, and then perform an optimization calculation until the calculation results are consistent with most of the phase diagram data and thermochemical data within the experimental error range.(5) After optimization, all the phase diagrams and thermodynamic data are connected by a thermodynamic model into a self-consistent whole, and finally stored in a model parameter to form a phase diagram thermodynamic database.Now, there are sophisticated phase diagram calculation software that can perform phase diagram calculations.Phase diagram calculation software is essentially a combination of thermodynamic models and computational principles with large-scale numerical calculations and powerful computer processing functions. It can not only achieve multivariate and multiphase equilibrium calculations, but also give various forms of stable and metastable phase diagrams. Other parameters that are closely related to the preparation and use of the material can be obtained.The main functions and features of commonly used phase diagram thermodynamic calculation software (Thermo-Calc, Fact Sage, Pandat, Jmatpro) are as follows. Here’s a brief list of their respective characteristics1, Thermo-Calc softwareThermo-Calc software has become a complete data system, powerful function, and a relatively complete structural calculation system. It is a thermodynamic calculation software that enjoys a good reputation in the world.Thermo-Calc software allows phase equilibrium calculations (such as liquidus and solidus temperature, composition and proportion of each phase, etc.), phase diagram calculations, and thermodynamic calculations. Thermodynamic data can also be tabulated and calculated. The thermodynamic function of the reaction changes and the driving force, the phase balance of the evaluation chemical system, and the phase transition, and the various phase diagrams are drawn by an automatic drawing program.2, Fact Sage softwareFact Sage software is a combination of ChemSage/SOLGA-SMIX two thermochemical software packages. Has the advantages of rich database content, powerful computing functions, and easy operation under the Windows platform.In addition to the multivariate multiphase balance calculation, Fact Sage software can also calculate and draw phase diagrams, dominant area maps, potential-pH diagrams, thermodynamic optimization, and mapping processing.Fact Sage software applications include materials science, pyrometallurgy, hydrometallurgy, electrometallurgy, corrosion, glass industry, combustion, ceramics, geology and so on.The Fact Sage 5.5 database includes:(1) A pure substance database containing 4,517 compounds;(2) Oxide database containing 20 elements;(3) Molten salt data containing 20 cations and 8 anions(4) Comprehensive database containing common alloy systems such as Pb, Sn, Fe, Cu, Zn, etc.(5) Specific databases for specific industrial processes such as electrolytic aluminum, paper industry, and high purity silicon.In addition, Fact Sage can also use other well-known international databases such as SGTE, and provide users with the ability to create private databases.3,Pandat softwareThe biggest advantage of the Pandat package is that even if the free energy function has multiple lowest points within a certain range of components, users who do not have phase diagram calculation expertise and calculation skills can do without setting initial values. Using the Pandat software, it can also automatically search for the stable balance of multi-phased multi-phase systems.The main features of Pandat’s software include computing, editing, and advanced features. The calculation function mainly covers:(1) Computation of phase diagram: Computation of binary phase, ternary and multicomponent equilibrium phase diagrams (isothermal section, equivalent section, user-defined section);(2) Calculation of liquidus: The liquidus (melting point) and primary precipitated phase can be automatically calculated, and the isotherm can be drawn.(3) Solidification calculation: Output information includes the curve of solid fraction, density, specific heat, enthalpy, etc. as a function of temperature;(4) Phase diagram optimization: used to evaluate a series of phase diagrams and thermochemical data, and to obtain thermodynamic model parameters that can be manipulated in the Windows interface to optimize phase diagrams.The main features of Pandat software are: friendly operation interface, easy to learn and use; stable and reliable calculation result; no need for user to input initial value and estimated value; software automatically finds balance points; supports user-defined database, and calculates for various phase diagrams and thermodynamics. Provides a powerful computing platform.Figure 2: The components of the PanGUI4, Jmatpro softwareJMatPro is based on powerful and stable thermodynamic models and thermodynamic data as the core technology and calculation. All physical models have been extensively validated to ensure the accuracy of material performance calculations. JMatPro’s calculation speed is very fast, usually can be completed within one minute. The most immediate advantage of fast calculations is that users can quickly experiment with their own material formulas and complete the desired calculations at their own computer.The main features include:(1) Stable and metastable phase diagram calculations. The user can calculate component planes such as phase diagrams of multiple alloy systems, and can also calculate phase diagrams of multicomponent alloys that change with temperature or vary with composition.(2) Calculation of physical properties – used for material CAE simulation. The relationship between the properties of the material and the temperature can be calculated. The performance data for each phase in the alloy can also be calculated at the same time and the phase diagram in the solidification process can be calculated.(3) Mechanical properties. The mechanical properties of the material can be calculated at room temperature and high temperature conditions.(4) Phase change calculation: Martensitic transformation, steel welding thermal cycle and multi-pass hot rolling calculation, TTT/CCT curve, etc.
Fonte: Meeyou Carbide

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 对天堂网在线观看av-一本色道久久亚洲狠狠躁-少妇被粗大的猛进视频-日韩熟女一区二区精品视频| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 久久精品熟女亚洲av麻豆-国产精品久久99粉嫩-校园春色另类综合在线视频-久久亚洲精品国产日韩| 蜜臀av午夜在线观看-亚洲欧美日韩成人综合在线-国产黄色一级性生活片-亚洲av高清一区二区三区麻豆| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 久热在线视频精品99-国产欧美日韩久久午夜-在线观看亚洲精品91-黄色大片一区二区久久精品视频| 国内精品国产三级国产-91制片厂麻豆果冻剧情观看-日韩中文字幕有码在线视频-精品人妻伦一区二区三区久久| 91精品啪在线观看国产91蜜桃-国产国拍亚洲精品av在线-日韩在线亚洲清纯av天堂-久久亚洲国产精品五月天| 亚洲香蕉久久一区二区三区四区-国产夫妻内射一级一片-成人午夜福利片免费观看-一区二区三区四区黄色网| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 成人一区二区三区免费观看-国内久久偷拍精品视频-欧美人与性动α欧美精品z-性感美女勾引男人视频| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 国内外成人综合免费视频-久久国产精品99久久蜜臀-大三美女口爆吞精视频-亚洲国产一区二区精品性色| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 日本一区二区三区欧美精品-农村少妇真人毛片视频-亚洲av乱码专区国产乱码-跨年夜爆操极品翘臀日韩| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 久久只有这里的精品69-亚洲欧洲av黄色大片-人妻少妇被黑人粗大爽-成人性生交大片免费看av| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放|