色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Cemented carbide has the edge of high hardness, good wear resistance, corrosion resistance and a small coefficient of thermal expansion. It is widely used in the manufacture of precision molds such as optical glass forming, metal drawing, and wear-resistant and corrosion-resistant parts. Cemented carbide mold not only has a long service life, more than ten times or even hundreds of times that of steel mold, but also has a very high surface quality of products. The glass lens and other parts of injection molding can meet the requirements of optical surface quality.

Cemented carbide is typically hard to machine material due to its poor machinability. Grinding and EDM are two of the most commonly used machining methods of cemented carbide die. With the appearance of CBN, diamond and other superhard tools, it is possible to directly cut cemented carbide, which attracts more and more attention. Foreign scholars have carried out more research. B. bulla et al. Analyzed the influence of machining parameters on the surface profile of cemented carbide in diamond turning. After obtaining the optimal machining parameters, further studied the influence of tool geometry on the surface roughness and tool wear. N. Suzuki et al. Carried out diamond ultrasonic elliptical vibration turning experiments on cemented carbide. It was found that the surface quality of ultrasonic elliptical vibration turning is better than that of ordinary turning, and the tool wear is smaller. Through the experiments, the hard alloy dies such as micro prism and spherical lens with optical surface quality were also machined.

è un segno importante misurare il livello di produzione dello stampo nazionale per produrre uno stampo in carburo cementato preciso, complesso e di lunga durata. La tecnologia di microfresatura presenta i vantaggi di un'elevata efficienza di lavorazione, un'ampia gamma di materiali di lavorazione, lavorazione di forme complesse tridimensionali, elevata qualità della superficie e così via. è molto adatto per la lavorazione di microstampi e microparti di metallo duro e ha un'ampia prospettiva di applicazione. In questo articolo gli utensili rivestiti diamantati vengono utilizzati per la micro-fresatura del metallo duro. Vengono analizzate la forza di taglio, la qualità della superficie e l'usura dell'utensile.

Test equipment and experiment schedule of PDC micro milling

The self-built high-precision micro milling machine tool (see Figure 1) is used. The machine tool is specially designed for micro milling of small and micro parts. It is composed of marble bed, feed mechanism, high-speed air flotation spindle, motion control system based on PMAC, etc. Due to the small diameter of micro milling cutter, it is not easy to achieve an accurate tool setting. The machine tool is equipped with a microscope tool setting system, which can also be used to monitor the micro-milling process online.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 2

Figure 1 micro milling machine

Use diamond coated micro milling cutter with spiral edge (see Fig. 2a). The base material of the cutter is hard alloy, and a layer of diamond film is coated by chemical vapor deposition (CVD). The handle diameter is 6mm, the blade diameter is 1mm, the blade length is 2mm, the front angle of the tool is 2 °, the back angle is 14 °, and the spiral angle is 35 °. The tool tip arc radius γ ε measured from the SEM side view is about 11 μ m (see Fig. 2b); the tool edge arc radius γ β measured from the SEM top view is about 8 μ m (see Fig. 2C).

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 3

(a)                                                 (b)

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 4

(c)

 Figure 2 diamond coated micro milling cutter

Diamond coated tools are used to mill the straight grooves under different machining parameters. Before the test, the surface of the workpiece is polished, then fixed and clamped on the measuring instrument, and the sampling frequency is 20kHz. All tests are conducted under dry cutting conditions. See Table 1 for micro-milling test parameters. The spindle speed n is fixed at 20000r / min, the milling depth AP is 2 μ m and 4 μ m, and the feed rate of each tooth FZ is 0.3-1.5 μ M. After the test, ultrasonic cleaning machine was used to clean the workpiece. Mahr surface roughness meter was used to measure the machined surface roughness and micro profile curve along the feed direction. The machined surface morphology and tool wear morphology were observed by SEM.

Test results and analysis of PCD micro milling

Milling force signal is an important parameter to monitor the milling process, which can reflect the tool wear status and machining surface quality in real-time. In the milling process, the cutting thickness changes continuously, which increases from zero to the maximum and then decreases to zero periodically with the rotation of the milling cutter, resulting in the wave trough and wave peak of the milling force signal. From the wave form of the milling force signal, we can observe the abnormal behaviors such as uneven cutting and vibration in the process of machining.

Fig. 3 is a waveform diagram of milling force signal measured by test, where Fx is the main cutting force, Fy is feed force, and Fz is axial force. It can be seen from the waveform of milling force that the amplitude of axial force Fz is the largest in the three components of milling process, far greater than the other two components, followed by the main cutting force Fx and the minimum feed force Fy. The reason is that the milling depth AP in micro milling is very small, which is far smaller than the radius of tip arc γ ε of micro milling cutter. Only a small part of the bottom of tip arc is actually involved in cutting, which is equivalent to the cutting with a small main deflection angle, resulting in a large axial milling force component.

For every rotation of the milling cutter, two symmetrical cutting edges will successively participate in cutting, which shows two wave peaks in the milling force signal period. It can be seen from the oscillogram that the amplitudes of the two peaks are not the same, and the amplitudes of the first half period are obviously larger than the second half. This shows that in the actual milling process, the cutting thickness of two cutting edges of double tooth milling cutter is different, one cutting edge has more materials, the other cutting edge has less materials, resulting in uneven milling phenomenon. Serious non-uniform Milling will cause the fluctuation of milling force, increase the vibration in the process of machining, which is not conducive to the stability of micro milling.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 5

Figure 3 micro milling force signal waveform

The milling forces under different micro milling parameters are recorded during ﹣ test. The peak value of milling force corresponding to the maximum cutting thickness in the tool rotation cycle is taken as the test result, and the measurement results of X, y and Z components are shown in Figure 4. At the same milling depth, the milling force increases with the increase of the feed rate FZ of each tooth. The main cutting force Fx and the feed force Fy rise relatively gently. When the milling depth is ap=2 m and 4 m, the main cutting force Fx rises from 0.44N and 0.92N to 1.34N and 2.05N respectively, and the feed force Fy increases from the 1.34N and the second to the “Ho” and “the”; the axial force increases by a large amplitude, from the “Qi” and “the” to “the”. Similarly, the increase of milling depth will also lead to the increase of milling force. The axial force FZ in the three-way component is sensitive to the milling parameters. The reason is that the feed rate of each tooth FZ in micro milling is smaller than the edge arc radius γ β of the micro milling cutter, which makes the contact area between the back face of the bottom edge of the micro milling cutter and the workpiece relatively large, and the friction force on the back face accounts for a large proportion in the milling force.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 6

Fig. 4 curve of milling force changing with machining parameters

Surface quality of PCD micro milling

Cemented carbide is a kind of hard brittle material. In traditional cutting, the hard brittle material is usually removed in the form of brittle fracture, which results in brittle failure defects on the machined surface and affects the quality of machined surface. The results show that when the machining parameters are controlled so that the cutting thickness is less than a certain critical value, the brittle material can also have plastic deformation, and the smooth ductile machining surface is obtained, which is called ductile cutting. Figure 5 shows the surface morphology and profile curve of micro milled cemented carbide at AP = 2 μ m and FZ = 1.2 μ M. It can be seen from the figure that the machining surface morphology is mainly the reflection of tool geometry, with clear tool mark texture distributed. From the contour curve, the feed tool mark of the tool teeth can be observed, and there is almost no brittle failure defect. In micro milling, the actual cutting thickness is very small, which can realize the ductile cutting of cemented carbide. The cemented carbide material is removed in the way of plastic deformation to obtain good machining surface quality.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 7

(a)geometry of surface

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 8

(b) contour curve

Figure 5 machined surface morphology and profile

Fig. 6 shows the curve of surface roughness Ra of micro milling cemented carbide with machining parameters. It can be seen from the figure that the Ra value of the machined surface roughness of cemented carbide is very small due to the ductile cutting in micro milling. The surface roughness Ra increases with the increase of feed per tooth AP and milling depth FZ, but the effect of feed per tooth on surface roughness is greater than that of milling depth. When AP = 2 μ m and FZ = 0.3 μ m, the minimum surface roughness is 0.073 μ m; when AP = 4 μ m and FZ = 1.5 μ m, the maximum surface roughness is 0.151 μ M.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 9

(b) contour

Figure 6 shape and outline of machined surface

Fig. 6 shows the change curve of surface roughness Ra of micro milling cemented carbide with machining parameters. It can be seen from the figure that the Ra value of the machined surface roughness of cemented carbide is very small due to the ductile cutting in micro milling. The surface roughness Ra increases with the increase of feed per tooth AP and milling depth FZ, but the effect of feed per tooth on surface roughness is greater than that of milling depth. When AP = 2 μ m and FZ = 0.3 μ m, the minimum surface roughness is 0.073 μ m; when AP = 4 μ m and FZ = 1.5 μ m, the maximum surface roughness is 0.151 μ M.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 10

(a)                                                 (b)

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 11

(c)

Diagram.7  micro geometry of wearing on cutting tool

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 12

Diagram.8 impact of milling length on surface roughness

Figure 8 shows the curve of surface roughness changing with micro milling path. It can be seen from the figure that the surface roughness Ra increases gradually with the increase of milling path. When the milling distance reaches 700m m, the surface roughness increases greatly; when the milling distance exceeds 700mm, the increase of surface roughness slows down; when the milling length is 1000mm, the surface roughness Ra reaches 0.224 μ M. After the tool wear, not only the milling force increases, but also the extrusion and friction of the workpiece become more serious, which increases the possibility of brittle failure of cemented carbide materials, causes brittle failure defects on the machined surface, worsens the machined surface quality, and increases the surface roughness.

Conclusion so far

(1) because the milling depth is far less than the radius of the tip arc, only the bottom of the tip arc is actually involved in the cutting, resulting in a large axial component. In the micro milling process of diamond coated double tooth milling cutter, there is a phenomenon of non-uniform milling, and the milling force increases with the increase of feed per tooth and milling depth.

(2) micro milling is very small, which can realize ductile cutting of cemented carbide and obtain good machining surface quality. The surface roughness Ra increases with the increase of feed per tooth and milling depth.

(3) results in uneven wear of two blades and serious wear of bearing blades. The surface roughness increases with the increase of milling path.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 国内熟妇与亚洲洲熟妇妇-伊人久久亚洲一区二区三区-亚洲av不卡在线短片-午夜国产理论大片高清| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 在线观看91精品国产性-国产中文字幕精品免费-免费日韩毛片在线观看-精品人妻暴躁一区二区三区| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 日韩人妻少妇手机看片-高清av有码中文字幕在线-禁止18勿入国产精品视频-中文字幕精品乱码亚洲一区| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 亚洲精品中文字幕播放-9l精品人妻中文字幕色-亚洲不卡一区二区在线看-97精品国产在线观看| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 亚洲精品人妻中文在线-国产成人精品视频三级-麻豆视频黄片在线免费观看-亚洲性色精品一区二区在线| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 精品国产自产在线观看-四虎av一区二区在线观看-91久久精品人妻中文字幕-av网页一区二区三区| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 国产一区二区三区视频网站-日韩av影片免费在线观看-日韩av有码免费在线观看-制服丝袜天堂网在线观看| av天堂免费中文在线-91麻豆国产综合精品久久-日韩av在线播放高清-台湾佬自偷自拍情侣在线| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 国产在线观看av自拍-成人自拍小视频在线看-十八禁网站在线免费观看-丰满的熟妇露脸大屁股| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 精品国产一区二区三区吸毒-国产精品一品二区精品网站-偷拍美国美女厕所撒尿-日韩精品在线视频一二三| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍|