色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Base knowledge of titanium

Titanium is an important structural metal developed in the 1950s. Titanium alloys are widely used in various fields because of their high specific strength, good corrosion resistance and high heat resistance. Many countries in the world have recognized the importance of titanium alloy materials, and have successively studied and developed them, and obtained practical application. Titanium is the fourth B element in the periodic table. It looks like steel and has a melting point of 1 672 C. It is a refractory metal. Titanium is abundant in the crust, far higher than common metals such as Cu, Zn, Sn and Pb. Titanium resources in China are extremely abundant. Only in the super-large vanadium-titanium magnetite discovered in Panzhihua area, Sichuan Province, the associated Titanium reserves amount to about 420 million tons, which is close to the total proved Titanium reserves abroad. Titanium alloys can be divided into heat resistant alloys, high strength alloys, corrosion resistant alloys (Ti-Mo, Ti-Pd alloys, etc.), low temperature alloys and special functional alloys (Ti-Fe hydrogen storage materials and Ti-Ni memory alloys).

Elements of Titanium Alloy

Titanium alloys are alloys based on titanium and added with other elements. Titanium has two kinds of homogeneous heterogeneous crystals: alpha titanium with dense hexagonal structure below 882 C and beta titanium with body-centered cubic structure above 882 C. The alloying elements can be divided into three categories according to their influence on the phase transformation temperature: 1. The elements that stabilize the alpha phase and increase the phase transformation temperature are alpha stable elements, including aluminium, carbon, oxygen and nitrogen. Among them, aluminium is the main alloy element of titanium alloy. It has obvious effect on improving the strength at room temperature and high temperature, reducing specific gravity and increasing elastic modulus of the alloy. (2) The stable beta phase and the decreasing phase transition temperature are beta stable elements, which can be divided into two types: isomorphic and eutectoid. The former includes molybdenum, niobium and vanadium, while the latter includes chromium, manganese, copper, iron and silicon. (3) Neutral elements, such as zirconium and tin, have little effect on phase transition temperature.

Oxygen, nitrogen, carbon and hydrogen are the main impurities in titanium alloys.  Oxygen and nitrogen have higher solubility in the alpha phase, which has a significant strengthening effect on titanium alloy, but reduces its plasticity. Oxygen and nitrogen contents in titanium are usually stipulated to be below 0.15-0.2% and 0.04-0.05% respectively. The solubility of hydrogen in the alpha phase is very small. The excessive hydrogen dissolved in the titanium alloy will produce hydride, which makes the alloy brittle. Usually hydrogen content in titanium alloys is controlled below 0.015%. The dissolution of hydrogen in titanium is reversible.

Structure and Classification of Titanium Alloys 2

classification

Titanium is an isomer with a melting point of 1720 (?) C and a dense hexagonal lattice structure at temperatures below 882 (?), which is called alpha titanium, and a body-centered cubic lattice structure at temperatures above 882 (?) C, which is called beta titanium. Titanium alloys with different microstructures can be obtained by adding appropriate alloying elements to change the phase transformation temperature and phase content gradually. Titanium alloys have three kinds of matrix structures at room temperature. Titanium alloys can also be divided into three categories: alpha alloys, (alpha+beta) alloys and beta alloys. China is represented by TA, TC and TB respectively.

Alpha titanium alloy

It is a single-phase alloy consisting of alpha-phase solid solution. It is alpha-phase both at general temperature and at higher practical application temperature. It has stable structure, higher wear resistance and strong oxidation resistance than pure titanium. Its strength and creep resistance are maintained at temperatures of 500 600 C, but it can not be strengthened by heat treatment, and its strength at room temperature is not high.

Beta titanium alloy

It is a single-phase alloy composed of beta-phase solid solution. It has high strength without heat treatment. After quenching and aging, the alloy is further strengthened, and its room temperature strength can reach 1372-1666 MPa. However, its thermal stability is poor and it is not suitable for use at high temperature.

Alpha+beta titanium alloy

It is a dual-phase alloy with good comprehensive properties, good structural stability, good toughness, plasticity and high temperature deformation properties. It can be processed under hot pressure and strengthened by quenching and aging. After heat treatment, the strength increases by 50%-100% compared with annealing state, and the high temperature strength can work for a long time at the temperature of 400 500 and its thermal stability is inferior to that of alpha titanium alloy.

Among the three kinds of titanium alloys, Alpha-titanium alloy and alpha+beta-titanium alloy are most commonly used; Alpha-titanium alloy has the best machinability, followed by alpha+beta-titanium alloy and beta-titanium alloy. Alpha titanium alloy code TA, beta titanium alloy code TB, alpha + beta titanium alloy code TC.

Structure and Classification of Titanium Alloys 3

Application of titanium alloy

Titanium alloys can be divided into heat resistant alloys, high strength alloys, corrosion resistant alloys (Ti-Mo, Ti-Pd alloys, etc.), low temperature alloys and special functional alloys (Ti-Fe hydrogen storage materials and Ti-Ni memory alloys). The composition and properties of typical alloys are shown in table.

Different phase composition and structure can be obtained by adjusting the heat treatment process. It is generally believed that fine equiaxed structure has better plasticity, thermal stability and fatigue strength; acicular structure has higher endurance strength, creep strength and fracture toughness; equiaxed and acicular mixed structure has better comprehensive properties.

Titanium alloys have high strength, low density, good mechanical properties, good toughness and corrosion resistance. In addition, titanium alloy has poor technological performance and difficult cutting. It is easy to absorb impurities such as hydrogen, oxygen, nitrogen and carbon in hot working. There are also poor wear resistance and complex production process. The industrialized production of titanium began in 1948. With the development of aviation industry, the titanium industry is growing at an average rate of 8% per year. At present, the annual output of titanium alloy processing materials in the world has reached more than 40,000 tons, and there are nearly 30 kinds of titanium alloy grades. The most widely used titanium alloys are Ti-6Al-4V (TC4), Ti-5Al-2.5Sn (TA7) and industrial pure titanium (TA1, TA 2 and TA3).

Titanium alloy is mainly used to make compressor parts of aircraft engine, followed by rocket, missile and high-speed aircraft. In the mid-1960s, titanium and its alloys have been used in general industry to make electrodes in electrolysis industry, condensers in power plants, heaters for petroleum refining and seawater desalination, and environmental pollution control devices. Titanium and its alloys have become a kind of corrosion resistant structural material. In addition, it is also used to produce hydrogen storage materials and shape memory alloys.

Titanium and titanium alloys were studied in 1956 in China, and industrialized production of titanium materials and TB2 alloys were developed in the mid-1960s.

Titanium alloy is a new important structural material used in aerospace industry. Its specific gravity, strength and service temperature are between aluminium and steel, but it has high specific strength and excellent seawater corrosion resistance and ultra-low temperature performance. In 1950, the U.S. first used F-84 fighter bomber as non-load-bearing components such as rear fuselage heat insulation plate, air guide hood and tail hood. Since the 1960s, the use of titanium alloys has shifted from the rear fuselage to the middle fuselage, partially replacing structural steel to manufacture important load-bearing components such as partitions, beams, flaps and slides. The amount of titanium alloy used in military aircraft increases rapidly, reaching 20%-25% of the weight of aircraft structure. Titanium alloys have been widely used in civil aircraft since the 1970s. For example, the amount of Titanium used in Boeing 747 passenger aircraft is more than 3640 kg. Titanium for aircraft with Mach number less than 2.5 is mainly used to replace steel in order to reduce structural weight. For example, the United States SR-71 high-altitude high-speed reconnaissance aircraft (flying Mach number of 3, flying altitude of 26,212 meters), titanium accounted for 93% of the aircraft’s structural weight, known as “all-titanium” aircraft. When the thrust-weight ratio of aero-engine increases from 4 to 6 to 8 to 10 and the outlet temperature of compressor increases from 200 to 300 degrees C to 500 to 600 degrees C, the original low-pressure compressor disc and blade made of aluminum must be replaced by titanium alloy, or the high-pressure compressor disc and blade made of titanium alloy instead of stainless steel, in order to reduce the structural weight. In the 1970s, the amount of titanium alloy used in aero-engines generally accounted for 20%-30% of the total weight of the structure. It was mainly used to manufacture compressor components, such as forged titanium fans, compressor discs and blades, cast titanium compressor casing, intermediate casing, bearing housing, etc.  Spacecraft mainly utilizes the high specific strength, corrosion resistance and low temperature resistance of titanium alloy to manufacture various pressure vessels, fuel tanks, fasteners, instrument straps, frameworks and rocket shells. Titanium alloy plate weldments are also used in artificial earth satellites, lunar module, manned spacecraft and space shuttles.

国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 中美高清在线观看av-精品视频中文字幕天码-日韩高清一二三区在线观看-精品人妻91一区二区三区| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 国产精品福利一区二区三区-日韩精品国产精品高清-日韩亚洲精品中文字幕在线观看-国内偷拍免费视频91| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 人日本中文字幕免费精品-日本口爆吞精在线视频-玖玖玖玖视频在线观看-国产精品内射在线播放| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| av午夜福利一片免费看久久-中文字幕日韩无敌亚洲精品-四虎高清成人在线观看-亚洲开心婷婷中文字幕| 亚洲精品一区二区三区探花-av在线免费播放成人-精品亚洲一区二区三区在线播放-国产精品午夜福利亚洲综合网| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 口爆调教视频在线播放-一区二区三区中文字幕自拍偷拍-亚洲精品乱码免费精品乱码免费-国产精品日韩欧美高清情| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 成人精品一区二区三区久久-中文字幕乱码亚洲无线三区-亚洲精品亚洲人成人网-中文字幕五月久久婷热| 国产女主播在线播放福利-日韩中文字幕综合第二页-av男人的天堂免费观看-国产乱码免费一区二区三区不卡| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区|