色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Many structures made of WC-Co carbide are subject to thermo-mechanical loading and have to conduct heat in order to function properly in industrial application. The current work provides results on a significant drop in thermal conductivity of WC-Co carbides as a function of material volume damage that accumulates during cyclic high-temperature loading of the materials depending on material microstructure. Average WC grain size and Co binder metal content of the investigated grades ranged from submicron to medium and from 10 to 12 wt%, respectively. The carbides were subjected to uniaxial cyclic loading in a vacuum for different numbers of load cycles at 700 °C and 800 °C. Damage features accumulated in the material volume were documented by means of scanning electron microscopy. Thermal conductivity properties of virgin and damaged materials were determined via laser flash analysis. The results indicated a significant decrease depending on the materials’ microstructure, i.e. the defects’ predominant location within the microstructure. The damage features that occurred mainly between WC grains in the coarser-grained grade led to larger drops in thermal conductivity with rising temperature compared to damage features that occurred within the Co binder metal in the finer-grained grade. The presented results are of high relevance to the thermo-mechanical load situation of e.g. milling tools since the heat conduction away from their cutting edges is hindered by the documented effect and deemed to lead to a self-acceleration of the damage accumulation.

Study on the Properties of Spherical Cast Tungsten Carbide Powders Prepared by Different Methods 2

Spherical cast tungsten carbide powder is a new type of ultra-wear-resistant ceramic particle material. Compared with traditional tungsten carbide, spherical cast tungsten carbide has two significant advantages: first, it has a regular spherical appearance, good powder flowability, and wettability, which results in good integration with the surrounding tissue when added as particles, reducing the likelihood of stress concentration; second, the internal structure of the tungsten carbide particles is dense, with good toughness, fine grains, high hardness, and the coating has excellent wear resistance and is less likely to break under load. Due to its outstanding performance, spherical cast tungsten carbide powder is gradually replacing traditional tungsten carbide powder in the surface protection of components in mining machinery, oil machinery, construction industry, and foundries, significantly improving the wear resistance, corrosion resistance, and oxidation resistance of workpieces, and extending the service life of workpieces.

Introduction to the Methods of Spherical Cast Tungsten Carbide

Currently, the spherical cast tungsten carbide powders available in the market are mainly prepared by the following methods: induction remelting spheroidization, plasma remelting spheroidization, and plasma rotating electrode atomization.

The induction remelting spheroidization method involves heating the material in a reactor to the spheroidization temperature through induction heating, and the material moves forward slowly the vibration of the furnace tube. If the dispersion of the material is not well controlled, the molten droplets will grow due to collision and adhesion, making particle size control difficult. Moreover, during the operation, the powder must not come into contact with the reactor, otherwise it will affect the entire spheroidization process and cause material waste.

The plasma remelting spheroidization method uses casting tungsten carbide powder as the raw material and employs radiofrequency plasma flame to heat argon gas to a high temperature of 3000 to 10000 ℃, melting the casting tungsten carbide particles into a liquid state and directly quickly condensing them into spherical particles. This method can easily obtain fine-grained spherical tungsten carbide powder by controlling the particle size and composition of the raw material.

The plasma rotating electrode atomization method uses a tungsten carbide rod as the electrode, fixed within the rod material bin, and then subjected to plasma atomization under inert gas protection. The plasma arc melts the end face of the high-speed rotating rod, and under the action of centrifugal force, the molten droplets separate from the edge of the molten pool and solidify in the form of spherical particles. This technology avoids the difficulty of material dispersion at ultra-high temperatures during remelting spheroidization, and the obtained spherical tungsten carbide powder has a narrow particle size distribution range and is easy to control.

The following will study the chemical composition, micro-morphology, microstructure, microhardness, and other powder properties of spherical cast tungsten carbide powders prepared by different methods.

Study on the Properties of Spherical Cast Tungsten Carbide Powders Prepared by Different Methods 3

Chemical composition

Study on the Properties of Spherical Cast Tungsten Carbide Powders Prepared by Different Methods 4

The table above shows the chemical composition of spherical cast tungsten carbide powder samples prepared by different methods. It can be observed that the main components of the spherical cast tungsten carbide powder are W and C elements, and all contain trace amounts of Fe, V, Cr, and Nb elements. The ideal spherical cast tungsten carbide should be a eutectic of WC and W2C, with an eutectic temperature of 2525 ℃ and a carbon content of 3.840% (by mass) at the eutectic point. From the data in the table, it can be seen that the total carbon content of the spherical cast tungsten carbide prepared by the plasma rotating electrode atomization method has the smallest deviation from the theoretical eutectic carbon content, with the lowest free carbon content; the powder obtained by the induction remelting spheroidization method has the largest difference in total carbon content from the theoretical value, with a difference of 0.170% (by mass). This is due to the carbon content increase caused by the graphite tube heating method used in the induction remelting spheroidization process. In addition, by comparing samples 2#, 3#, and 4# with similar particle sizes, it can be determined that the powder prepared by the plasma rotating electrode atomization method has the relatively lowest impurity content. However, the impurity content of sample 1# prepared by the plasma rotating electrode atomization method is relatively high, which may be related to the quality of the cast tungsten carbide raw material rod. This suggests that, compared to other methods, the plasma rotating electrode atomization method can more accurately control the carbon content of spherical cast tungsten carbide powder, preventing overeutectic and hypoeutectic reactions caused by carburization and decarburization, and obtaining a nearly complete eutectic structure, which is crucial for improving the microstructure and properties of spherical cast tungsten carbide.

 

Microscopic morphology

The Microscopic Morphology of Spherical Cast Tungsten Carbide Powder Samples
The Microscopic Morphology of Spherical Cast Tungsten Carbide Powder Samples

The image above shows the microscopic morphology of spherical cast tungsten carbide powders prepared by different methods. It can be observed that the spherical cast tungsten carbide powders prepared by the three methods are all regular and smooth, nearly spherical in shape.

Cross-sectional Photos of Spherical Cast Tungsten Carbide Powder
Cross-sectional Photos of Spherical Cast Tungsten Carbide Powder

The image above shows the cross-sectional photos of spherical cast tungsten carbide powders prepared by different methods. As can be seen from (a) and (b), the spherical tungsten carbide powder particles prepared by the plasma rotating electrode atomization method are dense with almost no defects. However, as seen in (c) and (d), there are some obvious pores within the spherical tungsten carbide powder particles prepared by the plasma remelting spheroidization method and the induction remelting spheroidization method, resulting in some hollow powders. The main reason for this is that the crushed tungsten carbide powder material used in the above methods is likely to contain residual pores from the casting process. During the short plasma or induction heating process, the interior of the crushed tungsten carbide powder is difficult to completely melt, leading to some residual pores within the particles.

Microstructure

Microstructure Photos of Spherical Cast Tungsten Carbide Powder Samples After Corrosion
Microstructure Photos of Spherical Cast Tungsten Carbide Powder Samples After Corrosion

The image above shows the microstructure photos of spherical cast tungsten carbide powder particles after corrosion. It can be observed that the internal structure of the spherical tungsten carbide powder particles prepared by the three methods mainly consists of a typical fine acicular WC and W2C eutectic structure. Compared to the plasma remelting spheroidization method and the induction remelting spheroidization method, the spherical cast tungsten carbide powder prepared by the plasma rotating electrode atomization method has a denser eutectic structure. This is because, unlike the plasma remelting spheroidization method and the induction remelting spheroidization method, the plasma rotating electrode atomization method completely melts the cast tungsten carbide feedstock rod and then solidifies by being thrown out under the action of centrifugal force. During the crystallization of the molten cast tungsten carbide, the degree of undercooling is greater, nucleation is more rapid, and a larger number of crystal nuclei are generated, resulting in a finer and denser eutectic structure.

 

Microhardness

The table below shows the average microhardness of spherical cast tungsten carbide powders prepared by different methods. It can be seen that the microhardness of the spherical cast tungsten carbide powders prepared by the three methods is all above 2800 HV0.1, with the powder prepared by the plasma rotating electrode atomization method having the highest microhardness, reaching 3045 HV0.1. This is mainly due to the finer eutectic structure within the spherical cast tungsten carbide prepared by the plasma rotating electrode atomization method.

Other Physical Properties of spherical cast tungsten carbide

The table below shows the flowability and apparent density values of spherical cast tungsten carbide powders prepared by different methods. It can be seen that the powder prepared by the plasma rotating electrode atomization method has the worst flowability and the smallest apparent density; whereas the powder prepared by the induction remelting spheroidization method has the best flowability and the largest apparent density.

Study on the Properties of Spherical Cast Tungsten Carbide Powders Prepared by Different Methods 5

Conclusione

(1) The spherical cast tungsten carbide prepared by the plasma rotating electrode atomization method has the smallest deviation from the theoretical eutectic carbon content, the lowest free carbon content, and relatively low impurity content.

(2) The spherical tungsten carbide powder particles prepared by the plasma rotating electrode atomization method are dense with almost no defects, and the eutectic structure is finer. The spherical tungsten carbide powder particles prepared by the plasma remelting spheroidization method and the induction remelting spheroidization method both have some obvious pores, resulting in some hollow powders.

(3) The spherical cast tungsten carbide powders prepared by the three methods mainly consist of WC and W2C phases.

(4) The microhardness of the spherical cast tungsten carbide powders prepared by the three methods is all above 2800 HV0.1, with the powder prepared by the plasma rotating electrode atomization method having the highest microhardness, reaching 3045 HV0.1. The powder prepared by the induction remelting spheroidization method has the best flowability and the largest apparent density.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 日本中文字幕人妻在线视频-中文字幕亚洲中文字幕亚洲-欧美午夜福利天堂视频-日韩人妻中文字幕精品| 男女激情四射午夜福利视频网站-人成午夜免费毛片直接观看-日本女优在线观看一区二区-青草国内精品视频在线观看| 日韩人妻少妇手机看片-高清av有码中文字幕在线-禁止18勿入国产精品视频-中文字幕精品乱码亚洲一区| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 精品国产中文字幕在线视频-性生活视频在线观看欧美-成年人免费黄片内射国产-国产欧美另类精品久久久| 久久精品熟女亚洲av麻豆-国产精品久久99粉嫩-校园春色另类综合在线视频-久久亚洲精品国产日韩| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 黄色大片一级在线观看-蜜臀91精品国产高清在线-色综合久久鬼色综合久久-九九热精品视频在线免费看| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 91精品在线播放黑丝后入-97免费在线播放视频-av网站天堂网国产av-亚洲熟妇乱色一区二区三区| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 久久女人天堂精品av-韩国中文字幕三级精品久久-国产成人精品日本亚洲i8-免费黄色一级大片91| 婷婷精品国产亚洲av不片-色播放视频在线观看视频在线播放-色综合91久久精品中文字幕-午夜视频网一区二区三区| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 国产午夜视频在线观看720p-成人深夜福利av在线-一区二区日韩精品教师学生-亚洲一区二区三区美臀在线播放| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 日韩av中文字幕剧情在线-亚洲综合一区二区三区在线-91麻豆精品国产大片免费-日韩欧美亚洲制服丝袜| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 亚洲丁香婷婷久久一区二区-少妇高潮乱语对白自拍-99偷拍在线视频精品-天堂精品中文字幕在线|