色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nowadays, the demand for orthopedic replacement and rehabilitation equipment is increasing. Medical components include artificial joints and artificial panels, rods and nails used to repair or strengthen body parts damaged by accidents or diseases.

With the general extension of human life expectancy, more and more elderly people suffer from bone and osteoporosis, which leads to the increasing demand for orthopaedic replacement devices. Global weight gain and obesity trends human bones and joints are under pressure from diameter. Gradually, the lifestyle of most people is changing, from lack of physical exercise to more participation in sports, further increasing the demand for posture exchange. With the development of emerging economies, more and more global research institutions predict that the value of the global orthopedic device market will increase to 50 billion euros ($53 billion) by 2024.

1.Competition promotes the development of cutting tools

In the highly competitive orthopedic parts market, the market share of five major suppliers has expanded by about 85%, and the remaining 200 companies compete for the remaining share. Part processing method. Through the application of new materials, implants become stronger, lighter and can last up to 25 years in the body. In this way, orthopedic equipment is a part of the whole consumer lifestyle market, moving towards personalization; Medical device manufacturers are considering how to customize their products to meet patients’ needs for appearance and other alternatives. Product differentiation has become a key competitive advantage. Therefore, machine tool manufacturers seek to develop solutions to enable them to quickly process parts with complex shapes, while tool manufacturers focus on developing tool technology that can provide higher speed and size. Advanced manufacturing technology solutions include 3D printing technology for processing and advanced cooling technology.

2.Typical medical parts

Orthopaedic instruments include hip and knee parts, artificial elbow and fracture joints, incision rehabilitation equipment, spinal plate and various rehabilitation nails, rods and fasteners. The key requirements of these components are strength, reliability, light weight and biocompatibility.

New strategy of milling cutter in orthopedic parts processing 2

3.Machining challenges of milling cutters

For bone and knee implants, the most common workpiece material is cobalt chromium alloy, but the use of titanium is also increasing. Typical cobalt chromium alloys include cocr28mo6, etc., and Ti6Al4V titanium alloy is the most commonly used material.

Both materials are biocompatible and very hard, so they are very suitable for the manufacture of orthopedic parts. However, these same characteristics also increase the difficulty of machining alloys. Cobalt chromium alloy has wear resistance, elasticity and poor performance. This alloy may contain hard abrasive components, which will lead to serious wear of cutting and milling cutters and produce tough and continuous chips. Therefore, it is necessary to use the cutting edge groove type with good chip control performance.

Titanium alloy is light and strong. It will harden and twist during processing. On the central cutting edge and face. The high temperature, large cutting force and high friction in the chip channel will lead to the crescent wear and failure of the milling cutter. The material has a minimum modulus of elasticity, which is advantageous in some implant applications, but the material will rebound from the cutting edge during machining, so it is necessary to pay close attention to the sharpness of the cutting tool.

4.Coolant requirements

Materials used to process orthopaedic implants often produce excessive speed and require the use of coolant. However, the use of traditional coolant usually has great restrictions on preventing part pollution. After processing, the traditional coolant needs to be cleaned, which is a time-consuming and costly process. Coolant itself can cause environmental problems in terms of employee health, safety and handling policies. Another cooling technology uses supercritical carbon dioxide (SCCO2) to dry this supercritical SCCO2 as the medium to transport the dry strong conduit to the cutting area.New strategy of milling cutter in orthopedic parts processing 3

When CO2 is compressed to 74 bar (1070 psi) at 31 C, it will become supercritical when transported to the cutting area. Although it will not produce low-temperature materials such as liquid nitrogen, supercritical CO2 will expand and form dry ice. In this state, it will fill the container like a gas, but the density is similar to that of a liquid. Therefore, the new coolant solution brings higher cooling efficiency and uses existing systems using high-pressure water / oil, micro lubrication (MQL), liquid CO2 and liquid nitrogen.

5.3D printing parts

Another non-traditional manufacturing technology that is becoming more and more common in the production of orthopedic devices is 3D printing, which uses titanium and cobalt chromium alloy powder to produce complex, nearly net formed parts. In the medical industry, selective laser melting (SLM) technology is used to melt powder and manufacture parts layer by layer. This process allows medical device manufacturers to customize parts with special contours and dimensions for patients. From there, a uniform microporous surface can also be produced, thereby accelerating the parts and body. For finish machining, parts produced by 3D printing retain most of the machining characteristics of the metal they use. However, such parts may need postprocessing to reduce the uneven stress generated during the processing. In addition, due to the near net shape and complex contour of the part, part clamping may be a challenge in the later stage of the process.

New strategy of milling cutter in orthopedic parts processing 4

6.Replacement of parts

Total knee arthroplasty usually consists of three basic parts: a contour metal (cobalt chromium alloy or titanium) part called the femoral part, which is connected to the end of the femur (thighbone). This part is fixed to the top of the tibia of the lower leg and consists of a short axis or keel to support the aligned surface with protruding edges. The last one consists of plastic bearing inserts between metal parts to enable the joint to move freely.

Similarly, hip arthroplasty consists of three main parts: a metal femoral stem with a femoral cap or femoral head at the top and inserted into the top of the femur or hip joint. kit. The Neo alinea bearing insert in the knee joint and the plastic cup in the lumbar joint are usually processed from UHMWPE (ultra high molecular weight polyethylene).New strategy of milling cutter in orthopedic parts processing 5

New strategy of milling cutter in orthopedic parts processing 6

7.Combined manufacturing method

For orthopaedic parts, the surface finish of the plastic joint must be excellent to reduce the expected life of the plastic parts, and the plastic parts must be aligned for 20 years at the same time. For example, when the knee is displaced, the femoral prosthesis and tibial bracket must be absolutely smooth to protect the plastic bearing insert from wear.

Therefore, the manufacturing of orthopaedic components usually needs to be ground after milling operation to achieve a sufficiently fine finish. However, grinding is very time-consuming and will affect the overall manufacturing efficiency and output. In addition, the grinding process will also produce high temperature and stress on the base parts, resulting in dimensional errors of parts and affecting the strength and performance of parts.New strategy of milling cutter in orthopedic parts processing 7

In general, advanced cutting machines and high-speed milling strategies can improve the grinding process or replace it in some cases. The purpose of milling is to produce a burr free profile and excellent surface finish, and to achieve specific required surface quality, size and dimensional accuracy. Since the defined surface shape and structure have been realized during milling, the time of post-treatment process (such as polishing (if any)) can be changed alternately. For cutting end mills, the same is true of durable and reliable cutting end mills and maximizing tool life and expectations.

A typical application is to use a ball end mill to process femoral parts made of cast cobalt chromium alloy on a 5-axis milling machine. High speed profiling strategy and high performance end milling cutter eliminate the grinding process. As a result, the machining cycle of each part is 11 minutes, which is 50% shorter than the previous method. The generation of waste parts is eliminated by grinding the hinged surface instead of milling. The integral carbide end mill is made of special cemented carbide materials and hard polished tialsin coating to ensure excellent metal removal rate and smooth cutting effect, so as to obtain excellent surface finish or shortest polishing time.

New strategy of milling cutter in orthopedic parts processing 8

8.Multiple machining operations

The complex contour of orthopedic parts usually requires the use of several special cutting end mills. For example, some types of bone involve seven machining processes: rough machining, bottom rough machining, bottom finish machining, chamfering and T-groove root cutting. These processes can obtain excellent surface quality and reliable tool performance with minimal manual intervention, so as to ensure the best alignment, lowest cost and highest quality.

In the past, when completing various operations, special cutting and milling cutters were needed to achieve each required contour, size and surface finish. Special cutting machines require a lot of design and development time and cost, and due to their reduced size, their crosslinking time may be prolonged and their availability is limited.

The new approach is to develop and use standardized cutting machines that can be produced efficiently in these applications, and these cutting machines must also retain sufficient size for processing other similar parts in the orthopaedic industry.

New strategy of milling cutter in orthopedic parts processing 9 

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 蜜桃在线观看免费网站-亚洲成熟女性一级黄色蝶片-日韩一级黄色片天天看-一区二区三区在线视频观看美女| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 午夜av毛片在线观看-青草精品视频在线观看-亚洲av中文字字幕乱码综合-午夜av一区二区三区中文字幕| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 天堂亚洲国产av成人-野花视频在线观看免费-在线播放h视频的网站-僧侣交合的夜晚在线观看| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区| 人妻少妇一区二区三区精品-三级尤物视频在线观看-野花在线中文字幕伊人-亚洲精品一区二区播放| 日本三区三级岛国片在线观看-免费av在线观看岛国大片-av在线导航国产精品-中文资源网天堂网亚洲精品| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 日韩久久久久久中文字幕-九九热视频精选在线播放-亚洲最大黄色成人av-亚洲最大av一区二区| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 日本精品视频免费在线-国产精品自在在线影院-日韩午夜一区二区三区-国产精品中文第一字幕| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| 亚洲精品一区网站在线观看-亚洲精品一区二区三区婷婷月-国产aⅴ精品一区二区三区久久-在线综合亚洲中文精品| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 91精品久久综合熟女-日产精品毛片av一区二区三区-国产精品永久在线播放-一区二区中文字幕在线视频| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看|