色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The surface roughness of a part is a technical requirement that measures the surface processing quality of the part. It significantly impacts the part’s fit, wear resistance, corrosion resistance, and sealing performance. The factors that affect surface roughness mainly include the workpiece material, cutting parameters, machine tool performance, and tool material and geometry parameters.

During the actual machining process, the cutting depth, feed rate, and spindle speed are predetermined and kept constant throughout the cutting process. Therefore, it is essential to optimize the combination of factors affecting surface roughness to obtain the optimal surface quality value. This article begins with the calculation formula of surface roughness and its relationship with chip thickness. It further explores the relationship between surface roughness, cutting depth, and feed rate. Additionally, it examines the impact of various factors on surface roughness through experimentation.

How To Calculate the Surface Roughness in Ball-end Milling 2

Mechanism of Surface Roughness Generation

Mechanism of Residual Height Generation

In curved surface machining, the residual height is mainly formed by the tool moving along the tool path and leaving material on the surface of the workpiece unremoved. As shown in Figure 1, the following parameters are defined: P as the tool contact point, R as the radius of the curved surface, θ as the angle between two radius lines, and n as the normal vector at point P. The stepover distance is represented by d, and it is closely related to the residual height h. Based on Figure 2(a), we can derive the following relationship:

How To Calculate the Surface Roughness in Ball-end Milling 3

In the equation: r represents the tool radius, and kh represents the normal curvature of the machining surface along the cutting feed direction.

 

 

How To Calculate the Surface Roughness in Ball-end Milling 4

When using the sectional plane method to generate tool paths, calculating the normal curvature (kh) can be challenging. In practical machining, an approximation is often used, where a plane approximates the surface between two adjacent tool paths, as shown in Figure 2(b). The stepover distance is considered the normal distance between the sectional planes. In this case, the residual height (h) can be described by the following equation:

How To Calculate the Surface Roughness in Ball-end Milling 5

1.2Calculation of Surface Roughness

Due to the presence of residual height, the surface of the part after mechanical machining will have many uneven peaks and valleys. This microscopic geometric shape is known as surface roughness, as shown in Figure 3. The parameter Ra is defined as the surface roughness, which is given by:

How To Calculate the Surface Roughness in Ball-end Milling 6

In the equation, L represents the sampling length.

How To Calculate the Surface Roughness in Ball-end Milling 7

Zooming in on Figure 3, we obtain Figure 4. When h’ is less than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 86

 

How To Calculate the Surface Roughness in Ball-end Milling 9

When h” is greater than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 10

In the equation, E represents the area of the region. Since y_a needs to ensure that the area above and below the central line is equal, i.e.,

How To Calculate the Surface Roughness in Ball-end Milling 11

In equation (6), p’ and p” are weighting factors. p is closely related to the chip thickness h. After a series of derivations, we can obtain

How To Calculate the Surface Roughness in Ball-end Milling 12

the expression of the sampling area is as follows

How To Calculate the Surface Roughness in Ball-end Milling 13

In the expression:

How To Calculate the Surface Roughness in Ball-end Milling 14

Substituting equations (4) and (5) into equation (8), we obtain:

How To Calculate the Surface Roughness in Ball-end Milling 15

After substituting equation (7) into equation (9) and simplifying through calculations, the relationship between the sampling area of surface roughness and the chip thickness is obtained as follows:

How To Calculate the Surface Roughness in Ball-end Milling 16

According to the above equation, it can be seen that there is a very simple relationship between surface roughness and chip thickness. When milling with a ball-end cutter, the feed per tooth is constant, while the chip thickness varies continuously based on the cutting depth and feed rate.

 

Experimental Data and Analysis

Experimental Conditions

Under steady-state cutting conditions, by varying the cutting depth and feed rate, the surface roughness values are measured for different parameter combinations. The micro-topography of the machined surfaces is observed using a three-dimensional profilometer, and the influence of cutting parameters on surface roughness is analyzed.

The experiment is conducted on the edge part shown in Figure 5, using a FANUC precision machining center machine. The workpiece material is 45# steel, and a high-speed steel milling cutter with a diameter of 12.5mm is selected as the cutting tool. The spindle speed is set at 800 r/min, and the cutting depth varies from 1mm to 6mm. Different feed rates are used for cutting at depths of 1mm, 2mm, 4mm, and 6mm, as illustrated in Figure 6.

 

Data Measurement

After completing the machining of the part, measurement points are selected on the curved section of the part shown in Figure 5. For each set of experimental conditions, data at these measurement points are measured twice, and the average value is taken as the experimental value. The experimental data are presented in Table 1

How To Calculate the Surface Roughness in Ball-end Milling 17

 

How To Calculate the Surface Roughness in Ball-end Milling 18

 

How To Calculate the Surface Roughness in Ball-end Milling 19

 

Data Analysis

From the experimental data, it can be observed that when machining the part using a ball-end cutter and keeping the feed rate constant, the surface roughness increases with an increase in cutting depth (see Figure 7). At lower cutting depths, the surface roughness values are smaller, but excessively small cutting depths result in longer cutting times and lower processing efficiency.

Although there is a certain difference between the experimental values and theoretical values in this study, they are relatively close. Hence, the provided calculation formula in this study can be adopted. For the selected workpiece in this study, the optimum surface roughness is achieved when the cutting depth is 2mm, and the feed rate is 700mm/min.

 

 

roughness

 

3conclusion

The study investigated the influence of various machining parameters on surface roughness during the milling process of the workpiece. The theoretical impact of surface roughness on the surface quality of the workpiece was explored, and a theoretical calculation formula for surface roughness was derived based on its generation mechanism.

Using the trial machining method and different combinations of parameter data, the surface roughness of the machined parts was measured using a three-dimensional profilometer. The calculated theoretical values from the formula were then compared with the experimental values.

The research demonstrated that both the calculation formula and the machining method are feasible and effective in predicting and controlling surface roughness during the milling process.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| 欧美精品香蕉视频在线观看-国产成人久久精品一区二区三区-亚洲国产日本在线观看-五月婷婷丁香综合在线观看| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 欧洲亚洲高清另类清纯-国产av一区二区三区av-亚洲精品一区二区三区午夜-国产夫妻自拍3p视频在线| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 午夜av毛片在线观看-青草精品视频在线观看-亚洲av中文字字幕乱码综合-午夜av一区二区三区中文字幕| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 久久亚洲av成人久久-国产性色av一区二区-国产三级韩国三级日产三级-国产一二三在线不卡视频| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 日韩欧美国产另类在线观看-精品人妻码一区二区三区剧情-国产91精品免费久久看-水蜜桃视频一区二区在线观看| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩|