色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Chip build-up is a tough issue. In order to reduce the consumption of cutters in batch production and lower the cost of cutter wear and tear during the production process, an analytical method combining theory and practice is adopted. By comprehensively analyzing the working conditions during the machining process, including machining efficiency, cooling methods, and product material, the adhesion of aluminum caused by the melting of aluminum is treated in practice to achieve cutter reuse, thereby reducing the cost of cutter consumption.

Chemical Treatment Method for Chip Build-up on Cutters during Aluminum Alloy Machining 2

Preface

With the rapid development of China’s automotive industry, the new energy vehicle industry has experienced exponential growth in recent years. Lightweight is a core topic in the new energy vehicle industry, and the core of lightweight is the transformation of traditional materials. Aluminum alloys, with their high strength and light weight, are indispensable materials for lightweight automotive manufacturing. The geometric shapes of auto parts are relatively complex, and the proportion of die-cast aluminum alloy parts in the whole vehicle is increasing, as is the demand for CNC machining of die-cast parts.

The CNC manufacturing of aluminum alloy auto parts mainly requires high efficiency, high stability of continuous production, and continuously reducing costs, which necessitates more detailed control and planning of the entire production process.

Chemical Treatment Method for Chip Build-up on Cutters during Aluminum Alloy Machining 3

Formation of Chip Build-up during Aluminum Alloy Machining

The main characteristic of aluminum in the machining process is its low melting point, which is manifested as “stickiness” in the working conditions. Due to this characteristic and insufficient cooling in actual working conditions, the heat generated by friction during the microscopic machining process cannot be released in a timely or effective manner. As a result, the aluminum melts and adheres to the cutting edge and chip flute of the cutter. When it cools, it instantly solidifies and adheres to the cutter, forming a chip build-up, leading to the scrapping of the cutter. This issue is commonly referred to in the industry as “easy to stick to the cutter.”

Cutters are a consumable in the CNC machining process and account for a significant portion of cost expenditures. The cutting edge of aluminum alloy-specific cutting tools should be sharper, and the chip flutes need special polishing treatment and an aluminum alloy-specific coating to improve the chip evacuation efficiency. The high-efficiency production in the automotive industry necessitates that cutters must increase feed rates and linear speeds, which in turn increases the heat generated during cutting, increases the risk of aluminum melting and sticking to the cutter, and leads to increased costs due to the scrapping of cutters caused by chip build-up.

With the requirements of environmental protection, the CNC machining of aluminum alloys extensively uses MQL (Minimum Quantity Lubrication) as a substitute for cutting fluids. The low melting point characteristic of aluminum, combined with the reduced cooling effect of MQL, further promotes the formation of chip build-up. Tools scrapped due to sticking account for about 409% of the total conventional scrapping of tools. Since traditional methods for dealing with chip build-up generally involve knocking or smashing, very few treated tools can be reused. Therefore, a new solution is proposed.

chip build-up

Treatment Measures

The specific treatment measures of the new solution are as follows:

Remove the cutter with existing chip build-up.

Find solid NaOH and dilute it with water, then place it in a ceramic container.

Once diluted into a NaOH solution, immerse the cutter with adhered aluminum into the solution, ensuring the aluminum-adhered parts are fully submerged, and continue for 2 hours, or prolong the immersion time based on the actual situation. A comparison of the traditional treatment method and the new solution is shown in Table 1.

 

Chemical Mechanism of Treating Chip Build-up

Taking the commonly used AIS7Mg material for automotive parts as an example, the content of Al is about 93.59%, the content of Si is 6.59%, and the content of Mg is 0.259%. Both Al and Si can react with NaOH solution. Soaking in NaOH solution can remove the main Al components remaining on the cutter. The principle is that the metal reacts with NaOH to produce bubbles (5), which eventually causes the adhered aluminum to fall off. The chemical reaction equations are as follows:

The reaction equation between Si and NaOH is:

Si + 2NaOH + H?O = Na?SiO? + 2H?↑

The reaction equation between Al and NaOH is:

2Al + 2NaOH + 6H?O = 2NaAl(OH)? + 3H?↑

Final conclusion: The aluminum is removed, and the cutting tool can be reused.

 

Experimental Verification

The above theory was tested using taps. The reason for choosing taps is that in aluminum alloy machining, taps are among the higher-value cutters and are tasked with a longer service life mission. Moreover, their geometric shape is complex, and the grooves are narrow, making it basically impossible to clear the adhered aluminum using physical methods after the sticking phenomenon occurs. Testing this type of cutter is more meaningful and representative.

Due to the high heat generated during machining and possible insufficient cooling, the aluminum is instantly melted and sticks in the grooves, indicating that the tap can no longer be used, and the thread profile is damaged.

According to the above chemical theory, the tap with adhered aluminum (chip build-up) was completely soaked in NaOH solution. After complete immersion in NaOH, the tap was visually inspected, and the chip build-up in the grooves had completely fallen off, with residual aluminum debris in the experimental vessel. The treated tap was used again to machine workpieces, and the thread profile of the workpiece was found to meet the requirements, with the thread being qualified. The tap could be reused.

 

Conclusione

The automotive parts industry is characterized by mass production. The matching of new equipment and specially designed cutters requires a large amount of cutting verification during the initial setup. During the verification process, due to factors such as parameter matching, the breaking-in of new equipment, and the inexperience of the debugging personnel, the phenomenon of chip build-up on cutters is relatively common, leading to a straight-line rise in scrapping costs and production cycles. Additionally, issues such as changes in blank allowances and momentary cooling instability during the later stages of mass production, which lead to aluminum adhesion, have been effectively resolved after applying this method. This has greatly saved on cutter costs and processing time, increased the service life of the cutters, and significantly reduced the production costs for the enterprise.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 青青草高清视频在线播放-熟女在线视频一区二区三区-亚洲国产中文字幕av-久久这里只有精品久久热| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 精品人妻在线一区二区三区-国内av在线免费观看-亚洲av影片一区二区三区-久久精品女同亚洲女同13| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 偷拍一区二区三区视频播放器-亚洲欧洲日产韩国综合-国产精品久久精品亚洲-国产乱淫av麻豆国产| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 国产免费午夜精品福利视频-久热99精品免费视频-久久久免费精品国产色夜-亚洲黄色不卡在线观看| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 四虎成人免费永久视频-婷婷激情五月天久久综合-亚洲欧美自拍偷拍丝袜-日韩精品午夜视频一区二区三区| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 久久成人三级一区二区三区-自拍视频在线观看成人-成人日韩在线中文字幕有码-国产黄色盗摄在线观看| 免费蜜臀av一区二区三区人妻-亚洲熟女少妇精品久久-国产精品毛片免费观看-亚洲精品国产二区中文字幕| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 极品尤物视频在线观看-亚洲成人av在线蜜桃-美国一级黄色免费网站-免费观看四虎国产精品| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 国产精品久久久久久野战-人妻少妇中文字幕在线一区-国产自拍日韩在线视频-少妇宅女午夜福利院免费| 成a级人在线观看网站免费看-久久久精品国产亚洲av水蜜桃-亚洲第一狼人在线观看-黄色欧美精品一区二区三区| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 国内精品一区二区三区香蕉-熟女少妇熟女高潮一区二区-亚洲乱码国产乱码精品精男男-国内人妻自拍偷拍视频一区| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 青青青视频蜜桃一区二区-粗大挺进人妻中文字幕-国产小视频在线看不卡-国产精品一区免费在线观看| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新|