色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Due to the “dual high” characteristics of high hardness and high toughness, the application scope of ultrafine-grained carbides has been expanding, leading to the development of tungsten carbide (WC), the main raw material for carbides, towards ultrafine particles. This is an undeniable fact. However, coarse-grained WC?possesses a series of advantages such as fewer microstructural defects, high microhardness, and low microscopic strain. As a result, it finds extensive applications in mining tools, petroleum drilling tools, engineering machinery, stamping dies, and hard surfacing technologies. In particular, its application in hard surfacing technology has rapidly developed in recent years, such as the production of pipe-type welding rods, electrodes, and spray welding powders using coarse-grained WC. Coarse-grained WC has been identified as a cost-effective wear-resistant hard surfacing material, which is of great significance in improving the efficiency of mechanical equipment and conserving metal materials.

The traditional method for producing coarse-grained WC?involves the following steps: WO? is reduced at high temperature to obtain coarse tungsten powder, which is then subjected to high-temperature carburization to produce coarse-grained WC. The WC produced by this process is approximately 22μm in size. This method has dominated the domestic industry for a long time.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 2

Development of Production Methods

In the past decade, there have been continuous updates in the manufacturing methods of coarse-grained WC?powder, including:

method 1 for coarse-grained WC Powder

High-temperature carburization of medium or fine tungsten powder: This process can produce coarse WC grains with a particle size of 7-8μm.

method 2

MACEO (Microplasma-Assisted Chemical Etching of Oxygen) method: This process can produce extremely coarse WC powder with a sieve size larger than 40 mesh. However, it requires special treatment and impurity purification before being used for manufacturing carbides.

method 3

Cobalt-nickel carburization method: This process utilizes a small amount of cobalt and nickel to accelerate the carbide formation of tungsten particles and promote rapid growth of WC grains. With this mechanism, coarse-grained WC with a particle size of 22μm can be produced at relatively low temperatures.

method 4

Classification of coarse-grained WC powder: This method involves using techniques such as cyclone separation, fluidized bed classification, liquid elutriation, or sieving to separate large particles containing W?C and free carbon from WC. This not only narrows the particle size distribution range but also improves the quality of WC powder by increasing the compound carbon content and reducing the free carbon content.

As the application scope of coarse-grained WC?continues to expand, the demand for coarse carbide with a particle size larger than 22μm cannot be met. Therefore, it becomes necessary to develop new coarse-grained WC?products with a particle size greater than 30μm. After several years of exploration, we have successfully experimented with the additive method to produce coarse-grained WC?powder with a particle size larger than 30μm. This method has the advantages of a simple and feasible process, easy operation, utilization of existing production lines without the need for additional equipment, low process temperatures that save energy and prolong the lifespan of process equipment, and high purity of the produced product with no residual additives. The particle crystallization is intact, and the particle size distribution is uniform, consistent with the normal production of WC for carbides.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 3

Experimental Method and Results

How to Manufacture Coarse-Grained WC Using Activated Additive Method 4

The experiment utilized blue tungsten oxide, produced by our factory, as the raw material. After uniformly adding the additive, it was subjected to continuous hydrogen reduction in a furnace at temperatures ranging from 900 to 1100°C, resulting in the production of tungsten powder (W). After carbonization with appropriate carbon content, the tungsten powder was further subjected to a one-hour carbonization process at around 2000°C in a continuous direct-heating carbon tube furnace. The coarse-grained WC?powder was obtained after ball milling and crushing.

The properties of the raw material, blue tungsten (W), are shown in Table 1. The properties of the intermediate product, tungsten powder (W), can be found in Table 2. The properties of the final product are presented in Table 3.

Using 1# WC with approximately 10% Co in the conventional process, the performance of the produced carbide?is as follows: strength of 2560 N/mm2, hardness of 86.5 (HRA), density of 14.42 g/cm3, magnetic flux density of 5300 A/m2, and WC grain size of 3.5 μm.

 

Analysis of Experimental Results

The above experimental results demonstrate that the additive used in the reduction and carbide formation processes of tungsten significantly increases the grain size of tungsten powder and tungsten carbide particles. As a result, various physical properties of tungsten powder and tungsten carbide powder undergo significant changes.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 5

Compared to products without the additive, the addition of the additive can increase the particle size of tungsten powder by 3.5 to 4.5 times and the particle size of tungsten carbide powder by 2.5 to 3.0 times. Within the scope of the experiment, the process temperature has a significant influence on the particle size of tungsten powder and tungsten carbide. However, the variation in additive content does not have a significant impact on the particle size of tungsten powder and tungsten carbide powder.

coarse-grained WC

Preliminary Exploration of Activation Mechanism

The experimental results indicate that the additive promotes the growth of WC particles, mainly during the tungsten reduction stage. However, during the carbide formation process, the particle size of the product does not increase and, in fact, slightly decreases.

It is well known that the reduction of blue tungsten (primarily composed of WO?go) to tungsten powder undergoes several stages: WO?go → WO?n → WO? → W. During the WO?go → WO? stages, the product generally maintains the particle morphology of its precursor. However, during the WO? → W stage, almost all particles undergo a significant change in morphology and there is a considerable variation in particle size. This can be attributed to two main reasons: first, the solid-state phase transformation during the reduction process leads to particle fracture and refinement; second, the volatilization → reduction → deposition mechanism causes particle coarsening.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 6

 

We believe that the presence of the additive not only enhances the volatilization → reduction → deposition process by creating an additional channel for the formation of WOxnReO(gas), but also suppresses particle fracture during certain solid-state phase transformations that occur during the reduction process. This further exacerbates the coarsening and refinement of intermediate reduction products. As a result, the additive increases the base number of tungsten powder particles that undergo growth and intensifies the cycle of re-oxidation → volatilization → reduction → deposition of fine tungsten powder particles. This is the mechanism by which the additive activates and promotes the growth of tungsten powder particles during the reduction process.

 

Summary and Current Issues In this study

it is observed that the carbide process conditions for tungsten powder described in the paper are not entirely optimal. As a result, some of the coarse particles in the final product of WC powder contain W?C inclusions in their cores, accounting for approximately 2.4% of the total particles, as shown in Figure 1. Therefore, further improvements are required in the carbide process to ensure its suitability for the production of carbides.

 

 

 

 

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 亚洲免费看三级黄网站-日韩国产熟女免费精品老熟女视频-久青草视频免费在线播放-国产日韩精品久久一区二区| 一区二区在线观看黑人-久久久精品人妻一区二区三区综合-成人内射国产免费观看-四虎在线免费视频观看| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 美女被狂躁到高潮视频-国产熟女精品自拍视频-亚洲中文字幕在线精品一区-成人在线中文字幕电影| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 午夜影视网站在线观看-欧美成年人性生活在线观看-好看的日韩电影一区二区三区-日本中文字幕在线在线| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 国产好大好硬好爽好湿免费视频-国产精品一区二区精品一区二区-白白色发布在线播放国产-99久久国产精品成人观看| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 对天堂网在线观看av-一本色道久久亚洲狠狠躁-少妇被粗大的猛进视频-日韩熟女一区二区精品视频| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 成a级人在线观看网站免费看-久久久精品国产亚洲av水蜜桃-亚洲第一狼人在线观看-黄色欧美精品一区二区三区| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放|