色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Dual-phase carbide refers to a type of carbide material that contains two different forms of grains. Typically, these two forms refer to plate-like grains and columnar grains. By adjusting the manufacturing process and parameters of the alloy, the proportion and arrangement of plate-like and columnar grains can be controlled. The preparation of dual-phase hard alloy can enhance the comprehensive performance of the alloy by combining the bending strength of plate-like grains with the uniformity of columnar grains, thereby improving the mechanical properties and service life of the hard alloy.

Brief history of WC carbide

Cemented carbide, born in 1923, emerged from a legendary and awe-inspiring nation – the Germanic people.

In the late 19th century, in search of new materials to replace high-speed steel and further enhance metal cutting speed, reduce processing costs, and solve issues like tungsten wire drawing for light bulbs, people began exploring the production of cemented carbide products.

In 1893, German scientists heated tungsten trioxide and sugar together in an electric furnace to high temperatures, successfully producing tungsten carbide. They attempted to utilize its high melting point and hardness to create wire drawing dies, as a substitute for diamond materials. Unfortunately, due to the brittleness, susceptibility to cracking, and low toughness of tungsten carbide, the first exploration of cemented carbide was declared a failure.

Entering the 1920s, German scientist Karl Schroter studied and discovered that pure tungsten carbide could not withstand the intense stress changes occurring during the drawing process. Only by adding low-melting-point metals to WC could the blanks possess a certain level of toughness without compromising hardness. Schroter proposed a method of powder metallurgy, mixing tungsten carbide with a small amount of ferrous metals (iron, nickel, cobalt), then pressing and sintering the mixture at temperatures exceeding a thousand degrees Celsius, resulting in the birth of the world’s first cemented carbide.

The continuous pursuit of cemented carbide with higher hardness and greater toughness led to the development of advanced production equipment for cemented carbide. In 2005, a team led by Professor Zhu Min from South China University of Technology in China introduced cold plasma into mechanical ball milling. By ball milling W, C, and Co powders with plasma, they were able to directly sinter the pressed green compacts into high-performance cemented carbide, achieving a one-step method for preparing high-performance and controllable W-C-Co cemented carbide.

 

The production of traditional hard alloys

The production process of traditional WC-Co cemented carbide is generally complex. It involves the reduction of tungsten oxide, carburization of tungsten, wet grinding of the mixed powders, drying and granulation of the mixed powders, compact pressing, debinding, and sintering. Clearly, this production process is intricate and has a relatively long production cycle. It also requires two high-temperature processes for carburization and sintering, resulting in high energy consumption, as shown in Figure

What is 2-phase WC Carbide? 2

fig1:The production of WC-Co carbide using traditional industrial methods

 

The utilization of low-temperature plasma-assisted high-energy ball milling (dielectric barrier discharge plasma-assisted milling, abbreviated as plasma milling) equipment has enabled the efficient refinement and activation of W-C-Co powders in a short period of time. Experimental results have confirmed that the composite powder obtained after discharge plasma milling (≤3 hours), when pressed and formed, can be directly sintered into WC-Co cemented carbide at around 1390°C, as shown in Figure 2.

What is 2-phase WC Carbide? 3

fig2:The one-step method for preparing WC-Co carbide, based on dielectric barrier discharge plasma-assisted milling technology

Compared to the traditional process of cemented carbide preparation, this method (carburization-sintering one-step method) avoids the drawbacks of the two high-temperature stages in the traditional process. It enables the synthesis of WC and the densification of WC-Co alloy bodies in a single step. This method is a new approach characterized by a short preparation process, simplified procedure, and low energy consumption. By utilizing this method and controlling the grain size and morphology of WC, as well as the arrangement state of plate-like WC, a novel high-performance cemented carbide with a dual morphology and dual-scale structure has been successfully prepared.

 

The one-step method for synthesizing carbide through carbide sintering

The one-step synthesis of cemented carbide is based on the discharge plasma-assisted ball milling technology. Firstly, the original W, C, and Co powders are subjected to plasma ball milling to produce nanocrystalline W-C-Co composite powder. The ball milling time is approximately 1-3 hours. Then, the prepared composite powder is cold pressed and formed into green compacts. Finally, the green compacts are carburized and sintered in a vacuum or low-pressure sintering furnace to obtain WC-Co cemented carbide bodies in a single step, as shown in Figure 2. The cemented carbide typically prepared by this method is a high-performance nanocrystalline or ultrafine-grained WC-8Co alloy.

What is 2-phase WC Carbide? 4

Figure 3 shows the DSC curves of W-C mixed powders milled for 3 hours using conventional ball milling and plasma-assisted ball milling. After plasma-assisted ball milling, the W-C mixed powder starts to form WC at around 900°C (the new plasma-assisted ball milling equipment can achieve WC synthesis below 800°C). This temperature reduction of 300-500°C compared to conventional carburization methods significantly shortens the carbonization process by tens to hundreds of hours compared to commonly used ball milling times.

What is 2-phase WC Carbide? 5

fig4:After 3 hours of plasma-assisted milling: (a) W-C powder; (b) morphology of W-C powder after sintering at 1000°C; (c) morphology of W-C powder after sintering at 1390°C.

It is highly meaningful that WC-8Co carbide prepared using the “one-step method” process exhibits excellent mechanical properties, as shown in Figure 5.

What is 2-phase WC Carbide? 6

fig5:The mechanical properties of WC-8Co carbide prepared by plasma-assisted milling with different scales

Based on the “carburization-sintering one-step method,” by adjusting the plasma ball milling time, it is possible to obtain cemented carbide with a combination of plate-like and prismatic WC in different proportions. When an appropriate proportion of plate-like and prismatic WC is achieved, the cemented carbide exhibits improved overall performance. This is because plate-like WC possesses good flexural strength, while the presence of prismatic WC effectively avoids the issue of lower transverse rupture strength (TRS) caused by highly oriented arrangement of plate-like WC on the cross-section.

The synergistic effect of the two different forms of WC ensures the uniformity of the mechanical properties of the cemented carbide and effectively enhances its comprehensive mechanical performance. For example, for WC-8Co cemented carbide prepared by vacuum or low-pressure sintering, when the percentage of plate-like WC is around 35%, its hardness is HRA92.1, and the transverse rupture strength (TRS) is approximately 3800 MPa.

Therefore, the development of the “carburization-sintering one-step method” for preparing WC-Co cemented carbide using plasma ball milling technology enables the microstructural control of WC in multiple forms and scales. This approach facilitates the production of high-hardness and high-strength WC-8Co cemented carbide.

 

High-performance dual-phase, dual-scale WC carbide

WC crystals belong to the hexagonal crystal system. The anisotropy of the hexagonal system results in different physical and mechanical properties of WC grains in each crystallographic direction or plane. The hardness of the WC (0001) basal plane is twice that of the WC (10-10) plane. When a certain amount of plate-like WC is present in cemented carbide and its distribution state is controlled by exploiting the anisotropy of plate-like WC grain properties, dual-phase cemented carbide with better performance than conventional cemented carbide can be prepared.

In the study of the effect of WC morphology on cemented carbide performance, it has been discovered that by carefully adjusting the plasma ball milling process, control of WC morphology as prismatic or plate-like (lamellar) can be achieved in the subsequent sintering process, as shown in Figure 6.

What is 2-phase WC Carbide? 7

fig6:Cold cylindrical and plate WC morphologies of different scales prepared by plasma ball grinding

Based on this foundation, the design and preparation of dual-phase cemented carbide with dual-phase WC grains have been achieved by adjusting the processing methods. The different morphologies of WC on different cross-sections demonstrate that the morphology of WC can be controlled to be either prismatic or plate-like by adjusting the ball milling time. In the study of the effect of plate-like WC content on improving mechanical properties, the proportion of different forms of WC in the cemented carbide matrix and the arrangement state of plate-like WC have been controlled through rational design.

Currently, while maintaining high hardness in the obtained WC-8Co cemented carbide, controllability in terms of strength has been achieved. The mechanical properties of the cemented carbide mainly include hardness = 91.5 ~ 93.0 HRA, TRS = 3300 ~ 4000 MPa, and KIC = 17.5 ~ 21.5 MPa*m1/2.

As shown in Figure 7, the content of different WC morphologies in a series of dual-phase cemented carbides and the mechanical properties listed in Table 1 indicate that the typical example C1P1 of dual-phase cemented carbide has a plate-like WC content of approximately 35%. The mechanical properties of the cemented carbide on different cross-sections are as follows: hardness on the cross-section = 92.4 HRA, TRS = 3795 MPa; hardness on the longitudinal section = 92.1, TRS = 3824 MPa. This indicates that the synergistic effect of the two different forms of WC not only ensures the uniformity of the mechanical properties of the cemented carbide on different cross-sections but also effectively improves its comprehensive mechanical performance.

What is 2-phase WC Carbide? 8

fig7:Variation in the content of columnar and lamellar WC in dual-phase WC carbide

What is 2-phase WC Carbide? 9

chart1:Hardness and TRS (tensile strength) of dual-phase WC-8Co carbide (corresponding to Figure 7).

In further research on the preparation of high-content plate-like WC cemented carbide, by selecting the particle size of the original tungsten (W) powder and employing a rational preparation process, the degree of orientation of plate-like WC can be well controlled, leading to a significant improvement in the transverse fracture strength of the cemented carbide, as shown in Figure 8.

What is 2-phase WC Carbide? 10

fig8:The process route for preparing dual-scale plate-like WC-Co carbide using plasma-assisted milling technology

In the current stage of research, the WC-8Co cemented carbide containing a high proportion of plate-like WC exhibits excellent mechanical properties, with the following optimal mechanical performance: cross-sectional hardness = 92.4 HRA, transverse rupture strength (TRS) = 4083 MPa, longitudinal hardness = 92.1 HRA, and TRS = 3924 MPa.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 久久99国产精品久久99蜜桃-国产在线精品福利91啪-日本啪啪免费观看视频-免费看的日麻批网站视频| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 亚洲激情文学国产激情-一本色道久久综合亚洲精品高-国产精品高清在线播放-九九热视频在线观看精品| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 亚洲熟女少妇av麻豆-男人一天堂精品国产乱码-欧美精品高清在线播放-亚洲国产午夜福利精品| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 国产亚洲欧美日韩俺去啦-91香蕉国产极品在线播放-国产夫妻生活自拍视频-永久免费的成年视频网| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 国产精品福利一区二区三区-日韩精品国产精品高清-日韩亚洲精品中文字幕在线观看-国内偷拍免费视频91| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 2023年久久国产精品-亚洲中文字幕二区在线观看-人人妻人人玩人人澡人九色-午夜精品福利视频网站| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频|