色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Starting in the 1920s, metal products, toys, and small hardware industries used punches, presses, and other simple mechanical equipment and corresponding molds to process product blanks or certain components, including “knifehead molds” for blanking and punching. "Docking mold" for metal stretching. At that time, the stamping equipment used by the factories was not very powerful, and most of them were still wrenched. In addition to the use of a small amount of simple general-purpose equipment, the mold processing is mainly manual, so the accuracy of the mold is not high, and the damage rate is large. It was not until the early 40s that hydraulic press cold punches appeared. With the production of a large number of stamping machine tools, from 1960 to 1970, cold stamping dies have been developed from single blank blanking and single punching dies to blanking and punching composite dies. Because of the appearance of the standard parts of the cold die frame, a variety of mold design structures are available, and the precision is also improved. At the same time, with the advancement of heat treatment technology and the improvement of detection methods, the service life of cold punching die is increased by 5 to 7 times. During this period, due to the successive use of machine tools such as forming grinding, electric pulse and wire cutting machines, and hard alloys as mold materials, the manufacturing process of cold punching molds has seen new development. The service life of cemented carbide cold punches has jumped from 35,000 to more than 1.5 million. As the designers improved the molding process, a large number of compound molds with automatic feeding, automatic sheeting and picking devices were introduced. After the introduction of the mold milling machine, the plaster core, the wood mold or the real object can be used to make the core of the same shape, which provides convenience for the production of the compound drawing mold and ensures the accuracy. After the 1970s, the cold die was machined using a slant line cutting machine. The punches and dies could be quenched and then cut and assembled to replace the original cold die making process: heat processing – assembly – deformation correction of the cumbersome process . The mold finish is also increased by one level and the accuracy can reach 0.01 mm. Later, the professional mold factory, mold workshop team has been widely used wire cutting machine processing cold stamping die.1、Introduction of powder compacted carbide diePowder pressed cemented carbide molds, also known as metal powder pressing molds, powder metallurgy molds and hard alloy molds, have high hardness (minimum 85.0HRA, up to 92.0HRA), high strength, good wear resistance, good toughness, impact resistance , Electrical processing performance, full system density, high internal cavity finish for a wide range of applications, non-stick red features, it is made of hard alloy material by precision grinding press mold, can greatly improve the surface quality of the product, its The service life is 5-10 times that of ordinary steel press dies. It is suitable for the most ideal hard alloy molds for magnetic powder, ceramic powder, refractory metal powder, iron-copper-based powder, copper, iron, aluminum, zinc, stainless steel and other metal powder materials. Has been widely used in electronics, automobiles, motorcycles, machinery, household appliances, aviation, aerospace, shipbuilding and other fields.The materials used to make stamping dies include steel, carbide, steel cemented carbide, zinc-based alloys, low-melting-point alloys, aluminum bronzes, and polymer materials. At present, most of the materials used to make stamping dies are steel. The types of common mold working parts include: carbon tool steels, low alloy tool steels, high carbon high chromium or medium chromium tool steels, medium carbon alloy steels, and high speeds. Steel, base steel, carbide, hard alloy steel and so on.The application of more carbon tool steels in the mold is T8A, T10A, etc. The advantages are good processing performance and low price. However, the harden ability and red hardness are poor, heat treatment deformation is large, and the bearing capacity is low.2. Low alloy tool steel Low-alloy tool steels are based on carbon tool steels with appropriate amounts of alloying elements. Compared with the carbon tool steel, the quenching deformation and cracking tendency are reduced, the hardenability of the steel is improved, and the wear resistance is also better. Low-alloy steels used to make molds include CrWMn, 9Mn2V, 7CrSiMnMoV (code CH-1), and 6CrNiSiMnMoV (code GD).3. High carbon and high chromium tool steel Commonly used high-carbon high-chromium tool steels are Cr12 and Cr12MoV, Cr12Mo1V1 (code D2), they have good hardenability, hardenability and wear resistance, heat treatment deformation is very small, high wear resistance micro-deformation die steel, bearing The ability is second only to high speed steel. However, segregation of carbides is severe, and repeated forging (axial boring, radial plucking) must be performed for forging to reduce the non-uniformity of carbides and improve the service performance.4. High carbon medium chromium tool steel The high-carbon medium-chromium tool steels used in the molds include Cr4W2MoV, Cr6WV, Cr5MoV, etc. They have lower chromium content, less eutectic carbides, uniform carbide distribution, small heat treatment distortion, good hardenability and dimensional stability. Sex. The performance is improved compared to high carbon high chromium steels where carbide segregation is relatively severe.5. High speed steelHigh-speed steel has the highest hardness, wear resistance and compressive strength in die steels, and it has a high load carrying capacity. Commonly used in the mold are W18Cr4V (code 8-4-1) and W6Mo5 Cr4V2 (code 6-5-4-2, U.S. brand M2) containing less tungsten, and vanadium-reduced high-speed steel developed to improve toughness. 6W6Mo5 Cr4V (code 6W6 or low carbon M2). High-speed steel also needs to be forged to improve its carbide distribution.6. Base steel Add a small amount of other elements to the basic ingredients of high-speed steel, and increase or decrease the carbon content to improve the performance of the steel. Such steels are collectively referred to as base steels. They not only have the characteristics of high-speed steel, have a certain degree of wear resistance and hardness, and fatigue strength and toughness are better than high-speed steel, high-strength cold working tool steel, the material cost is lower than high-speed steel. The matrix steels commonly used in molds include 6Cr4W3Mo2VNb (code 65Nb), 7Cr7Mo2V2Si (code LD), and 5Cr4Mo3SiMnVAL (code 012AL).7. Cemented Carbide and Steel Cemented CarbideHard alloys have higher hardness and wear resistance than any other type of die steel, but have poor bending strength and toughness. The cemented carbide used as a mold is a tungsten-cobalt type, and a mold having a small impact resistance and a high wear resistance is required, and a hard alloy containing a relatively low amount of cobalt may be used. For high impact molds, carbides with high cobalt content can be used.Steel cemented carbide is made by adding a small amount of alloying element powder (such as chromium, molybdenum, tungsten, vanadium, etc.) as binder to iron powder, and using titanium carbide or tungsten carbide as the hard phase, which is sintered by powder metallurgy. The steel cemented carbide substrate is steel, which overcomes the disadvantages of poor toughness and processing difficulties of the cemented carbide, and can be cut, welded, forged and heat-treated. Steel-bonded carbides contain a large amount of carbides. Although the hardness and wear resistance are lower than those of cemented carbides, they are still higher than those of other steels. After quenching and tempering, the hardness can reach 68 to 73HRC. Carbide die is more than ten times or even several times as long as the life time of the steel die. The hard alloy die only has high hardness, high strength, corrosion resistance, high temperature resistance and small expansion coefficient. Generally tungsten carbide is used as the hard alloy.Such as the market standard materials YG3, YG6, YG6X.YG8.YG15, YG20, YG20C, YG25 and HU20, HU222, HWN1 (non-magnetic alloy mold), etc., using the original carbide material, low pressure sintering and other special processes, the toughness will be more than the conventional production Better, the service life will increase 3-5 times.classificationCemented carbide molds can be divided into four categories depending on their use:The first category is carbide drawing dies, which account for most of the carbide die. China’s current wire drawing die’s major grades YG8, YG6, YG3, followed by YG15, YG6X, YG3X, developed some new grades, such as the new grade YL for high-speed wire drawing, and the drawing die number CS05 imported from abroad (YLO.5 ), CG20 (YL20), CG40 (YL30); K10, ZK20/ZK30.The second type of mold is cold heading cold die and plastic die, and the main brands are YC20C, YG20, YG15, CT35 and YJT30 and MO15.The third type of mold is a non-magnetic alloy mold for the production of magnetic materials, such as YSN series YSN (including 20, 25, 30, 35, 40) and steel joint non-magnetic die TMF.The fourth type is the hot die. There is no standard grade for such alloys and the market needs to increase.Applicable to cold heading cold punching of copper, aluminum, steel, alloy steel material standard parts, screws, rivets, etc., flat head cold heading die, countersunk head cold heading die, a sequence of punching die, shrink rod die and other commonly used models.1. Adopt 99.95% high purity raw material tungsten carbide powder and cobalt.2. The hardness of the cold heading mold reaches HRA88 or more, and the bending strength reaches 2400 or more.3. Has a high wear resistance with impact resistanceIngredients (select tungsten carbide powder + cobalt powder according to applicable requirements) → fully mix → pulverize → dry → add molding agent after sifting → re-dry → sieving to obtain mix → mix granulation, pressing → forming → (Germany Imported Vacuum Low-pressure Sintering Furnace) Sintering → Sintered Roughcast → Inspection (Nondestructive Ultrasonic Testing) → Drawing Design → Mold Set and Die Set Inlaying or Welding → Electromachining (Electrode-Welding or Wire Cutting) Machining → Grinding and Polishing → Pliers Repair → trial mode → packing.Third, powder pressed carbide die technical parameters1, WC and other alloy components%: 88.0.2. Co content %: 12.0.3, density g/cm3: 13.4 to 14.8.4, hardness HRA: 85.0 ~ 91.5.5, grain size um: 1.0 ~ 1.8.6, bending strength MPa: 2800 ~ 4000.7. Elastic modulus GPa: 390-525.8. Thermal expansion coefficient 10-6/0C: Impact toughness J/cm2: 4.9-6.8.Resources:Our Tungsten Carbide Wear PartsOur Tungsten Carbide Cold Heading DieOur Tungsten Carbide Wire Drawing Die
Fonte: Meeyou Carbide

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 国产欧美日韩精品一区二-久久精品国产精品青草色艺-人妻熟妇视频一区二区不卡-亚洲国产精品第二在线播放| 精品国产亚洲av蜜臀-欧美亚洲伦理在线视频-久久亚洲国产成人影院av-国产精品99蜜臀久久不卡二区| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 在线观看日韩不卡视频-深夜福利成人羞羞免费视频-日韩欧美精品综合另类-黄色特级一级片中文字幕| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 亚洲av一区二区三区av-国产av一区二区三区香蕉-久久超碰免费欧美人妻-九一精品人妻一区二区三区| 日韩人妻少妇手机看片-高清av有码中文字幕在线-禁止18勿入国产精品视频-中文字幕精品乱码亚洲一区| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 日韩亚洲一区二区在线观看-欧美色一区二区三区在线-日韩av黄片在线观看-深夜成人福利在线观看| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热| 久久精品中文字幕一区二区-日本夫妻性生活视频播放-综合久久精品亚洲天堂-日韩中文字幕不卡久久| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 亚洲精品一区二区三区探花-av在线免费播放成人-精品亚洲一区二区三区在线播放-国产精品午夜福利亚洲综合网| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 亚洲熟女少妇av麻豆-男人一天堂精品国产乱码-欧美精品高清在线播放-亚洲国产午夜福利精品| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 久久久免费福利视频观看-成年人在线观看视频免费播放-噜噜中文字幕一区二区三区-视频一区视频二区三区| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 久久精品中文字幕一区二区-日本夫妻性生活视频播放-综合久久精品亚洲天堂-日韩中文字幕不卡久久| 在线播放国产av蜜桃-国产精品自拍免费在线-亚洲国产成人综合青青-日韩成人高清在线视频| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码|