色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

3D laser printing mainly includes organic polymer materials (plastics, resins, rubbers, etc.), metal materials (nickel-based high-temperature alloys, titanium alloys, magnesium-aluminum alloys, stainless steel, precious metals, etc.), ceramic materials (alumina-zirconia co-melt), etc. However, the research and industrialization of 3D printing for cemented carbide materials lag behind other materials.

What is cemented carbide?

Carbide is a composite material, usually made by sintering with methods such as powder metallurgy, including refractory metal carbides (carbides of titanium, molybdenum, tungsten, tantalum, niobium, etc.) and binding metals (nickel, molybdenum, tungsten, cobalt, etc.). Carbide has excellent mechanical properties, good wear resistance, oxidation resistance, and thermal stability. It is widely used in metal cutting and forming applications, abrasive slurry nozzles, mechanical seal rings and bearings, oil drilling, etc., and is known as the “teeth of industry.”

Traditional manufacturing methods of cemented carbide

Carbide is generally prepared by traditional methods such as injection molding, extrusion molding, die pressing, hot pressing, hot isostatic pressing, spark plasma sintering, etc. In addition, surface modification methods such as plasma spraying, reaction flame spraying, tungsten inert gas (TIG) arc melting, and laser surface treatment have been applied to the preparation of carbide coatings and clad materials.

The disadvantages of traditional hard alloy forming methods

Currently, the preparation technology of carbide still faces some serious technical challenges, including:

Carbide product preparation is entirely dependent on molds, which have high costs, long cycles, and high subsequent processing costs (often accounting for more than 50% of the cost), which greatly affects the manufacturing cost of cemented carbide.

Many complex-shaped carbide products cannot be prepared by conventional and advanced powder metallurgy methods, such as hollow parts, internal holes, internal grooves, small angle bends, and chip breakers of cutting tools, which severely limit the structural design space of carbide products.

Traditional carbide preparation technology cannot achieve the preparation of multifunctional/variable functional composite structure and gradient structure cemented carbide, which obviously hinders the expansion of the application field and the play of advantages of carbide.

What is 3D Laser Printing for Cemented Carbide Products? 2

The additive manufacturing method of? carbide: laser sintering

Additive Manufacturing (AM) is a disruptive technology that can accumulate materials layer by layer based on designed CAD files to form complex-shaped parts. AM technology can easily achieve the production of complex-shaped parts and is expected to reduce the production cost of carbide. Therefore, additive manufacturing of carbide is increasingly being valued.

The main technical means include powder bed fusion (PBF), such as Selective Laser Melting (SLM) and Electron Beam Additive Manufacturing (EBM), and Directed Energy Deposition (DED), such as Laser Engineered Net Shaping (LENS) and Wire Arc Additive Manufacturing (WAAM).

Due to the high melting point of carbide, the use of additive manufacturing technology still poses great challenges. Currently, the additive manufacturing technologies that have been used for carbide mainly include: Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Laser Engineered Net Shaping (LENS), Binder Jetting 3D Printing (3DP), and 3D Gel Printing (3DGP).

Advantages of 3D laser printing in AM

Additive manufacturing technology can successfully produce cemented carbide parts with good mechanical properties and near theoretical density, but there are also many problems. Cracks, pores, and surface roughness are inevitable quality defects in additive manufacturing of cemented carbide, and the unique microstructure formed by the repeated heating and cooling process of additive manufacturing also affects the part’s performance. Post-processing methods such as hot isostatic pressing and heat treatment will bring additional time and cost, hindering the development of additive manufacturing of cemented carbide.

What is 3D Laser Printing for Cemented Carbide Products? 3

Main species of 3D laser printing for cemented carbide

SLS technology and LENS forming technology

Selective laser sintering (SLS) is one of the rapid prototyping (RP) technologies, which include indirect laser sintering (EMLS) and direct laser sintering (DMLS). It can directly manufacture three-dimensional (3D) parts of any shape using metal powder and is suitable for small batch manufacturing of cemented carbides. SLS forming technology for cemented carbides often requires subsequent processing, such as element infiltration to improve comprehensive performance. Adding rare earth oxides as nucleation sites can refine the grain size and improve the relative density and microhardness of the parts.

While Increasing the laser power density and powder feed rate in LENS forming technology of hard alloy can result in higher sample height and improved forming quality. Alloys prepared by LENS have inconsistent mechanical properties in the height direction and exhibit a layered structure similar to SLM, with the build direction affecting the microstructure.

 

3D Laser Printing Forming Technology

The 3DP forming technology of cemented carbide operates at a lower temperature, avoiding element evaporation and resulting in a uniform microstructure and improved wear resistance. By using a binder metal such as nickel, molybdenum, tungsten, or cobalt, and subsequent infiltration, parts comparable to traditional cemented carbide can be obtained. The 3DGP forming technology of cemented carbide generally does not have obvious cracks or void defects, and has a uniformly distributed microstructure and excellent mechanical properties.

What is 3D Laser Printing for Cemented Carbide Products? 4

selective laser melting (SLM) technology

selective laser melting?technology uses high-energy lasers to completely melt metal powder, which then solidifies quickly through rapid cooling to form the desired shape. Compared to SLM printing of metal materials, SLM printing of cemented carbides is much more difficult and the densification mechanism is more complex. The main reason for this is that during the SLM printing process, only the Co binder phase can melt, while the WC ceramic phase has a very high melting point (greater than 2700℃) and will not melt during the printing process, which seriously hinders the densification process of cemented carbides.

 

The selective laser printing technology of cemented carbide is prone to cracks and voids defects, which can be avoided by appropriately increasing the Co content in the WC-Co alloy to prevent the generation of brittle phases and reduce crack sensitivity. The microstructure of the alloy can be controlled through the process. Based on these characteristics, different microstructure can be obtained by adjusting the energy density. For carbide, high energy density produces a brittle microstructure with small WC grains and low Co content, while low energy density produces a tough microstructure with large WC grains and high Co content. Controlling the microstructure through the process is an important means of SLM preparation of parts, but further research is still lacking.

laser printing procedure

The Future of Additive Manufacturing for carbides

Currently, selective laser printing has difficulty producing cemented carbide parts with nearly theoretical density, and further research is needed to study the relationship between process, part quality, and microstructure. Compared to SLM, 3DP and 3DGP can produce parts with better performance and more uniform microstructure, but with lower dimensional accuracy and more complex processes, process improvement or corresponding post-processing should be considered. One of the main applications of additive manufacturing of cemented carbides is the production of cutting tools and molds. Therefore, the cutting durability, fracture behavior, and wear mechanism of corresponding parts should be further studied. To expand the applicability of additive manufacturing of cemented carbide parts, future research should combine traditional processes such as hot isostatic pressing to further improve the overall performance of the parts and meet the requirements of complex part manufacturing.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 久久精品国产欧美日韩热-久久综合色一综合色88-特西西日本午夜人体艺术-97中文字幕在线视频| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 亚洲老妈激情一区二区三区-夜晚福利视频亚洲精品自拍视频-亚洲av永久精品一区二区在线-中文国产人精品久久蜜桃| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 国内精品国产三级国产-91制片厂麻豆果冻剧情观看-日韩中文字幕有码在线视频-精品人妻伦一区二区三区久久| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 精品国产精品久久一区免费式-男女高清无遮挡免费视频-av男人的天堂一区二区三区-免费观看视频网站97| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 国产一区二区三区视频网站-日韩av影片免费在线观看-日韩av有码免费在线观看-制服丝袜天堂网在线观看| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看| 日本免费久久精品视频-毛很浓密很多黑毛熟女-97这里只有精品在线-亚洲乱码国产乱码精品精| 天堂网日韩一区二区三区四区-自拍视频在线观看地址-91麻豆视频免费入口-国产理论片一区二区三区| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 97视频在线观看精品在线-久久精品欧美日韩一区麻豆-亚洲精品在线少妇内射-国产在线一区二区三区三州| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 亚洲综合精品一区二区在线-国产亚洲精品视频在线播放-国产精品经典三级免费观看-五月婷婷六月丁香视频| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区|