色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

CNC drilling machines and carbide micro drills have always been the mainstream equipment for processing PCB circuit boards. A large amount of PCB processing tasks still rely on CNC milling and drilling to complete. As a subsystem of electronic products, PCB circuit boards play a role as a core module unit. Modern high-performance electronic products have increasingly higher requirements for PCBs, which also means that the precision requirements for carbide micro drill are becoming higher and higher.

 

Common PCB substrate copper laminates are made by bonding the insulation material and copper foil using adhesive and hot pressing, with epoxy glass fiber cloth board used as a pressure plate reinforcement material.? The board contains uncured resin, and the heat generated by mechanical friction during processing will soften the uncured resin, increasing frictional resistance, breaking cutting tools, and producing sludge, which affects processing quality. This makes the mechanical processing performance of PCB boards relatively poor.

This article mainly compares and studies the cutting performance of carbide ?drills produced by our company in China and similar famous carbide ?drills abroad when processing PCB boards.

 

Test Conditions

The test selected drills of the same specifications but from different manufacturers to drill holes in PCB boards. The selected tool specifications are shown in Table 1.

carbide micro drill bit

To reduce the impact of experimental errors, four tools from two companies were selected for drilling experiments. The material being cut was a double-layer copper PCB with a thickness of 1.2mm, and a 2.5mm thick cardboard was placed underneath the work piece.

During the processing, the cutting performance of the tools from the two companies was compared by comparing the roughness and chip removal of the processed PCB board, as well as the tool life.

 

 

Experimental Data

Test PCB Machining Quality

The machining quality of the PCB boards observed after cutting with 8 different drill bits is shown in Table 2. It can be seen that the 4 drill bits from Meetyou company can generally achieve good machining results, except for the fourth bit which caused sawtooth-like defects on the PCB board. In comparison, two of the foreign company’s drill bits caused corrugated defects and sawtooth-like defects on the PCB board. The surface roughness of the PCB board after machining can also indicate that the micro drill from Meetyou company have better surface roughness during the machining process, while the drill bits from the foreign company have poorer surface roughness on the PCB board after machining. However, compared with the drill bits from Meetyou company, the chip removal effect of the drill bits from the foreign company is not as good.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 2

PCB Carbide micro drill’s service life

The average service life of 8 drill bits from Company 2 can be seen from Figure 3. It can be seen that the service life of Meetyou Company’s drill bits is about 40% higher than that of the drill bits from a foreign company.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 3

 

From Table 4, it can be seen that the lifespan values of the eight drills from the two companies are in a discrete distribution, with almost 40% difference in the lifespan of the same company’s drills. This shows that even though Meetyou’s drills have better quality, from the experiment we can see that there is still much room for improvement in the tungsten carbide micro drills of both companies.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 4

 

The experimental results showed that the surface roughness and tool life of the PCB board processed by Meetyou’s drill bit were better than those of the foreign company, but the tool life of both companies was not consistent. The photographs of the tools after processing showed that the main forms of tool wear were caused by the generation of abrasive particles and surface oxidation wear.

 

Problems Generated by carbide micro drill on?PCB Circuit Boards

Through high-speed photography to observe the drilling process and the chip removal situation, scanning electron microscopy to observe the drilling morphology, and using software such as Deform and AdvantEdge FEM to simulate the drilling process extensively, it was found that the drilling process of PCB circuit boards is not simply punching holes, but a conventional metal cutting process. It will form conical spiral chips, and the copper chips will bend and break under the action of gravity during the discharge process, and finally be thrown out at high speed rotation of the micro drill, as shown in Pic. 1.

The epoxy resin glass fiber cloth chips are discharged in the form of white powder. The resin in the chips is easy to soften under heating conditions, and the glass fiber chips are adhered together to form mixed chips, as shown in Pic. 2. This kind of mixed chips are easy to adhere to the hole wall and form drilling dirt, which will also adhere to the drill tip and affect the next drilling step, and may even adhere to the spiral groove surface to obstruct chip removal. The drilling models of micro drilling for copper foil and epoxy glass fiber cloth are shown in Pic.3.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 5

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 6

 

Reasons analysis to cause drilling problems on PCB

Drilling force

The drilling force fluctuated significantly during the drilling of epoxy glass fiber cloth with micro-drills, which was due to the small size of the micro-drills. When drilling glass fibers, the axial drilling force decreased sharply with the fracture of the glass fibers because the micro-drill only drilled a few glass fibers at the same time. The axial force and torque both decreased with increasing speed, but increased with increasing feed rate and core thickness. With an increase in helix angle, the axial force increased, while the torque decreased. The typical drilling process of a micro-drill with a diameter of 0.1mm is shown in Figure 4.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 7

Drilling temperature

The temperature at the moment of drilling a PCB with micro-drills was measured using an infrared thermal imager and extensively simulated. The results showed that the drilling temperature was typically below 80°C at the moment of drilling with micro-drills. The drilling temperature decreased with an increase in feed rate and spindle speed, but increased with an increase in the number of drill holes and the diameter of the micro-drill. The drilling temperature measured by the infrared thermal imager is shown in Figure 5.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 8

Drill bit wear

the morphology of micro-drill wear was observed through scanning electron microscopy, as shown in Figure 6. The wear characteristics of micro-drills are mainly abrasive wear and adhesive wear. Abrasive wear mainly occurs on the transverse edge and main cutting edge, affecting the service life of micro-drills. Glass fibers and fillers in PCBs are the main cause of abrasive wear in micro-drills. Resin-mixed chip adhesion wear occurs on the drill tip and helix groove surface of micro-drills, as shown in Figure 7, which affects the cutting performance and chip removal of micro-drills, thereby causing the temperature inside the hole to accumulate and aggravating micro-drill wear.

5 Common Machining Quality Issues of carbide?micro drill on?PCB? 9

  1. D=0.1 mm,vf=150cm/min,n=295/min,vr=2300cm/min,2500holes.
  2. D=0.2mm,vf=150cm/min,n=155/min,vr=1800cm/min,1500holes.
  3. D=0.3mm,vf=240cm/min,n=145/min,vr=1800cm/min,1500 holes

Fracture

It?was found that the fracture was caused by the edge near the drill tip participating in cutting during processing, which is easily damaged by friction and impact of glass fiber, causing cutting to not proceed normally. Micro-drill bending and severe twisting ultimately lead to micro-drill breakage. Experimental and simulation results show that excessive twisting load is the main cause of micro-drill breakage, and the fracture point of the micro-drill is located at the root of the micro-drill spiral groove, at a certain distance from the top of the drill.

Conclusion?of carbide micro-drill’s drilling quality for PCB.

In summary, by observing the micro-hole sections under scanning electron microscopy, it was found that not only are there entrance and exit burr problems on the micro-hole surface, but also entrance roundness error, entrance size error, burrs and hole position accuracy, and roughness of the hole wall. The burrs and edges of micro-drills are mainly caused by micro-drill wear. Roughness of the micro-hole wall mainly occurs due to the fracture and shedding of multiple glass fibers in the epoxy glass fiber layer. Hole position accuracy is mainly related to spindle vibration characteristics, drill diameter, and drill wear. Reducing feed speed and increasing rotation speed can improve the quality of micro-holes in PCBs within a certain number of drilling holes. The most fundamental method to improve micro-hole quality is to reduce the contact area between micro-drills and PCBs to improve the wear resistance of micro-drills.

Leave a Reply

Your email address will not be published. Required fields are marked *

日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 国产成人一区二区免费av-国产成人精品一区二区不卡-亚洲乱码精品一区二区在线-青草视频免费在线观看尤物| 国产老熟女精品视频大全免费-精品丰满熟女一区二区蜜桃-亚洲自国产拍性生活自拍-中文字幕熟女激情50路| 日韩av中文字幕剧情在线-亚洲综合一区二区三区在线-91麻豆精品国产大片免费-日韩欧美亚洲制服丝袜| 岳的大肥屁熟妇五十路99-偷拍美女解手视频精品-日韩欧美一区二区三区精品-亚洲国产精品成人自拍| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 日本女同免费在线观看-在线视频成人国产自拍-日韩av在线观看大全-后入翘臀剧情片在线看| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 色婷婷av一区二区三区网-日韩在线不卡一二视频-中文字幕乱码免费在线视频-黄片欧美免费在线观看| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 日本一区二区三区乱在线视频-国产精品一区二区精品视频-日本人妻系列在线免费看-国产成人高清三级视频| 亚洲免费看三级黄网站-日韩国产熟女免费精品老熟女视频-久青草视频免费在线播放-国产日韩精品久久一区二区| 日本av在线一区二区三区-日韩人妻在线中文字幕-亚洲国产一区二区三区久久-国产日本一区二区三区久久| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 九色蝌蚪国产极品自拍-国产夫妻自拍后入视频-国产一级黄色片在线观看-亚洲欧洲日产国产av| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 欧美日韩在线视频一区不卡-高清自拍最新国产精品-亚洲自偷精品视频自拍-日韩在线不卡中文字幕| 国产精品 一区二区 久久-国产在线一区二区三区四区视频-午夜日本在线观看视频-日韩一区二区中文字幕18禁| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 日韩欧美国产另类在线观看-精品人妻码一区二区三区剧情-国产91精品免费久久看-水蜜桃视频一区二区在线观看| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看|