色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

There are helpful ideas about how to cut tungsten carbide rod. As we all known, Tungsten carbide is usually referred to as a sort of a Hard material due to its extremely high hardness in relation to other materials. Typically a Tungsten Carbide can have a hardness value of 1600 HV, whereas mild steel would be only in the region of 160 HV. You wanna try to score or cut off tungsten carbide rods effectively. The following 4 ways may work out, which are abrasion wheel grinding, machining by superhard material, electrolytic machining(ECM), and electric discharge machining(EDM).

4 Best Methods of How to Cut tungsten carbide rod Properly? 1

Cut carbide blank by wheel grinding

We know that the hardness of the tool material itself must be higher than the hardness of the workpiece to be machined. The Rockwell hardness of the cemented carbide is generally around HRA78 to HRA90.Thus, for now on, materials that can process carbide blanks mainly refer to poly-crystalline cubic boron nitride(PCBN) and poly-crystalline diamond(PCD).
The main materials for grinding wheels are green silicon carbide and diamond. Since grinding of silicon carbide will generate thermal stress exceeding the strength limit of the cemented carbide, surface cracks happens a lot, which makes silicon carbide not an ideal option to make surface that can be guaranteed.
While diamond abrasive granule in size ranging from 60/70 meshes to 325/400 meshes effectively work on grinding cemented carbide parts. The larger the value of the particle size, the higher the machining accuracy. In general 80/180 will nicely suitable for fine-finishing of various carbide moulds.
Although the PCD grinding wheel is qualified complete all the tasks from roughing to finishing on carbide blanks, in order to reduce the loss of the grinding wheel, carbide blanks will be pre-processed by electric machining method, then do semi-finishing and fine-finishing by grinding wheel at last.
There is a chart showing common processing parameters when PCD wheel grind on carbide material.
Fig.1 processing parameters of diamond grinding wheel when cutting

4 Best Methods of How to Cut tungsten carbide rod Properly? 2

While doing PCD wheel grinding, low feed speed is critical. That’s because higher speed it takes, the higher grinding temperature, which is a cause of severe wear of the grinding wheel. It’s also not the higher the better. On the contrary, if feed speed is too low, resulting huge cutting thickness, surface roughness of the machined surface is definitely getting affected, and the wear of the grinding wheel also increases.
Another element to be paid attention is that the coolant used must be free of sulfur and have a pH of 7 to 9. Otherwise the coolant will corrode the cobalt binder of the cemented carbide, and the reduction of cobalt will result in a failed microstructure of the cemented carbide, as shown as pic 2.

4 Best Methods of How to Cut tungsten carbide rod Properly? 3

Pic.2 microstructure of carbide surface lacking in cobalt

Cut carbide by milling and turning

Materials of CBN and PCBN, intended as a method to cut black metals with hardness, such as hardened steel and cast steel (iron). Boron nitrite is able to withstand high temperature’s influence (above 1000 degrees) and hold hardness at 8000HV.This property makes it equal to processing of carbide blanks, especially for those structural parts comprised by carbide core and steel casing under an interference fit.
Nevertheless, when the hardness of cemented carbide parts is higher than HRA90,totally out of boron nitrite’s league to cut, no more need to insist on PCBN and CBN tools.we can only turn to diamond PCD cutters as a substitute under this condition. There are certain advantages of PCD to machining TC-based carbide blanks, such as its hardness that can reach more than 10000HV( 100–120 times that of cemented carbide). PCD tools also have a thermal conductivity of 700 W/mK, which is 1.5 to 9 times that of cemented carbide. It helps to achieve the roughness of surface on carbide blanks up to Ra0.2μm.
We still can’t lose sight of disadvantage of PCD inserts, its inability to obtain extremely sharp edges and the inconvenience to be fabricated with chipbreakers. Therefore, PCD can only be used for fine cutting of non-ferrous metals and non-metals,but can’t achieve ultra-precision mirror-cutting of carbide blanks,at least not yet.
Cut carbide by electromachining

a.ECM

Electrolytic processing is the processing of parts by the principle that carbide can be dissolved in the electrolyte (NaOH). It ensures that the surface of the carbide workpiece doesn’t get heating up. And the point is that ECM’s processing speed and processing quality are independent of the physical properties of the material to be processed.

4 Best Methods of How to Cut tungsten carbide rod Properly? 4

Pic.3 Principle of ECM carbide blanks
As shown in the picture 3, the carbide workpiece is connected to the direct current positive electrode functioning as an anode, and the negative electrode of the tool and the direct current power source is connected as a cathode. Under the action of the current, as the cathode is fed, the cemented carbide on the anode is continuously dissolved in the electrolyte until it is processed into the desired shape size. The whole process is carried out at room temperature.
The chemical reaction equation on the anode:
W+O2=WO2
WO2+2NaOH=Na2WO4+H2O
Co+M2A=CoA+2M–2e
In general,its processing parameters are:
DC voltage 10~15V. Current density 10~3010~30(A/cm2), electrolyte pressure 1~3 (kgf/cm2)

4 Best Methods of How to Cut tungsten carbide rod Properly? 5

Fig.3 Comparison of electrolytic processing parameters
Compared to other material, during cutting carbide blank, electrolyte’s pressure is an important factor affecting the surface quality of the finished product. When it is too high, the flow rate of the electrolyte is going to be too fast, which causes the WC particles to be washed away by the electrolyte before they are completely dissolved.
What happens if WC particles and Co particles to be removed at an inconsistent rate? Yes, many spots on workpiece’s surface will appear. Another factor worth noting is that the carbide material of the workpiece is more uniform in microstructure and with finer particle size, the more accurate the surface precision will be.
After rough machining, the surface roughness of the carbide blank can reach Ra0.8~0.4μm, and the average machining accuracy can reach ±0.1mm. The productivity of ECM is several times of EDM, and since ECM does not consume tool electrodes, the cost is also low.

b.EDM

The principle of EDM is based on the electrical corrosion phenomenon between the tool and the workpiece (positive and negative electrodes) during the pulse spark discharge to remove excess carbide parts to achieve the predetermined processing requirements for the size, shape and surface quality of the workpiece. Only copper-tungsten electrodes and copper-silver electrodes can process carbide blanks.
In short, EDM does not utilize mechanical energy, does not depend on cutting forces to remove metal, but directly uses electrical energy and heat to remove the carbide part. Compared with mechanical cutting,
EDM has the following characteristics:
1. The material removal is achieved by the thermal erosion of the discharge. The processability of the material mainly depends on the thermal properties of the material, such as melting point, specific heat capacity, thermal conductivity (thermal conductivity), etc., almost independent of its mechanical properties such as hardness and toughness.
2. Can process special and complex shapes of parts.
3. The whole process can be automated.
4. Since EDM is not affected by the hardness of the material, it can be processed after quenching.
EDM has its unique advantages, but at the same time has certain limitations, which are manifested in the following aspects:
1. Processing efficiency is relatively low. In general, the processing speed per unit of machining current does not exceed 20 mm3 / (A · min). The material removal rate of EDM is relatively low compared to machining. Therefore, machining cutting is often used to remove most of the allowance, and then EDM. In addition, there is a prominent contradiction between the processing speed and the surface quality, that is, the processing speed during finishing is very low, and the rough processing is often limited by the surface quality.
2. The surface after EDM will have a metamorphic layer or even microcracks. Due to the instantaneous high heat generated on the machined surface during EDM, thermal stress deformation occurs, resulting in a deteriorated layer on the surface of the machined part.
3. Under normal circumstances, the minimum corner radius obtained by EDM is slightly larger than one by ECM, which is generally 0.02~0.03mm. If the electrode is worn, the corner radius will be larger than that value. There is no possibility for EDM to obtain completely right angle and utmost angular deviation.
4. The discharge part must be in the working fluid during EDM, otherwise, an abnormal discharge will happen also lead to trouble to observe the processing state.

4 Best Methods of How to Cut tungsten carbide rod Properly? 6

Pic.4 discharge part must be in the working fluid during EDM
5. Actually, the “glow” shows on the machined surface are consists of a number of pulsed discharge pits. Thus, the finished surface will never have the “glow”, which is the consequence of being polished by other processing methods.

13 December, 2019

Very helpful information

13 December, 2019

Very helpful information I need cutting parameters to machine carbide on cnc turning machines(i already use pcd inserts for it)

19 July, 2021

Buenas tardes, el carburo de tungsteno se puede cortar por sistema chorro de agua?
Gracias

20 July, 2021

Yes, Waterjet Cutting technologies can almost cut anything , it is only a matter of time.

5 September, 2023

I am currently supplying a customer who machine carbide blanks, turning internal
and external diameter , they use 55 degree 04 PCD on 12 m/m shank, they produce
4 dies , cutting breaks down, and they touch up the point geometry ,
on a wheel,
I am being asked to supply DCGW 11T304, we do a number of grades , In PCD,
and also CBN ,
the carbide rod is 63 rockwell, please advise best grade,
kind regards
dave higgs

Leave a Reply

Your email address will not be published. Required fields are marked *

欧美亚洲国产另类在线-九九热精品在线免费视频-日本高清有码在线一区-青草第一视频在线观看| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 最新国产av在线播放-成人av免费观看黄色-中文字幕人妻av一区二区风险-亚洲av午夜精品福少妇喷水| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 亚洲天堂av免费在线看-操老熟女中国老太自拍-夫妻性生生活免费视频-日韩av有码高清在线| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 日本av自拍偷拍视频-日韩精品人妻一区二区三区-看片福利国产午夜三级看片-在线观看视频最新信息好幫手| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 亚洲av乱码久久观看-亚洲爆码一区二区三区-91亚洲国产精品视频-黑丝美女被爆操流白浆| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 国产精品性色av免费-人妻系列中文字幕一区二区-精品一区二区三区在线日韩-亚洲欧美日韩国产一二三区| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本|