色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Tool surface coating technology is a surface modification technology developed in response to market demand. Since its appearance in the 1960s, this technology has been widely used in the metal cutting tool manufacturing industry. Especially after the emergence of high-speed cutting technology, coating technology has been rapidly developed and applied, and become one of the key technologies of high-speed cutting tool manufacturing. This technology can form a film on the surface of cutting tool by chemical or physical methods, so that the cutting tool can obtain excellent comprehensive cutting performance, so as to meet the requirements of high-speed cutting.

In summary, the surface coating technology of cutting tools has the following characteristics:

1. Coating technology can greatly improve the surface hardness of the tool without reducing the strength of the tool. At present, the hardness can reach nearly 100 GPa.

2. With the rapid development of coating technology, the chemical stability and high temperature oxidation resistance of the films become more prominent, which makes high-speed cutting possible.

3. Lubrication film has good solid lubrication performance, which can effectively improve the processing quality and is also suitable for dry cutting.

4. Coating technology, as the final process of tool manufacturing, has little effect on tool accuracy and can be repeated.

Benefits of coated cutting tools: can greatly improve the life of cutting tools; effectively improve cutting efficiency; significantly improve the surface quality of the workpiece being processed; effectively reduce the consumption of tool materials, reduce processing costs; reduce the use of coolant, reduce costs, and benefit environmental protection.

Correct surface treatment of small circular cutters can improve tool life, reduce processing cycle time and improve surface quality. However, it may be a confusing and laborious job to choose the correct tool coating according to the processing requirements. Each coating has both advantages and disadvantages in cutting. If improper coating is selected, the tool life may be lower than that of uncoated tools, and sometimes even more problems than before.

At present, there are many kinds of tool coatings available, including PVD coatings, CVD coatings and composite coatings alternately coated with PVD and CVD. These coatings can be easily obtained from tool manufacturers or coating suppliers. This paper will introduce some common properties of tool coatings and some commonly used PVD and CVD coatings selection schemes. Each characteristic of the coating plays an important role in determining which coating is most beneficial for cutting.

How to Correctly Select Tool Coating Correctly in Machining to Improve Tool Life 2

TiN coatings

TiN is a general-purpose PVD coating, which can improve tool hardness and oxidation temperature. The coating can be used for cutting tools or forming tools of high speed steel to obtain good processing effect.

Chromium Nitride Coating (CrN)

CrN coating is the preferred coating in the processing of chip tumors because of its good adhesion resistance. With this almost invisible coating, the machinability of HSS or cemented carbide tools and forming tools will be greatly improved.

Diamond Coating

CVD diamond coating can provide the best performance for cutting tools of non-ferrous metal materials. It is an ideal coating for processing graphite, metal matrix composites (MMC), high silicon aluminium alloy and many other high abrasive materials. A chemical reaction occurs, which destroys the adhesion layer between the coating and the cutting tool.

Coating equipment

Coatings suitable for hard milling, tapping and drilling are different and have their own specific application occasions. In addition, multi-layer coatings can also be used. Other coatings are embedded between the surface layer and the tool matrix, which can further improve the service life of the tool.

TiC coating (TiCN)

Carbon element added in TiCN coating can improve tool hardness and obtain better surface lubricity. It is an ideal coating for high-speed steel tools.

Nitrogen-Aluminum-Titanium or Nitrogen-Titanium-Aluminum Coatings (TiAlN/AlTiN)

The alumina layer formed in TiAlN/AlTiN coating can effectively improve the high-temperature working life of cutting tools. The coating can be used for cemented carbide cutting tools mainly used for dry or semi-dry cutting. According to the different proportion of Al and Ti in the coating, AlTiN coating can provide higher surface hardness than TiAlN coating, so it is another feasible coating choice in the field of high speed machining.

Characteristics of Coatings

hardness

High surface hardness caused by coating is one of the best ways to improve tool life. Generally speaking, the higher the hardness of the material or surface, the longer the tool life. TiCN coatings have higher hardness than TiN coatings. Due to the increase of carbon content, the hardness of TiCN coating is increased by 33%, and the hardness range is about Hv3000-4000 (depending on the manufacturer). The application of CVD diamond coatings with surface hardness up to Hv9000 on cutting tools has been mature. Compared with PVD coated cutting tools, the life of CVD diamond coated cutting tools has increased by 10-20 times. The high hardness and cutting speed of diamond coated tools can be 2-3 times higher than that of uncoated tools, making them a good choice for cutting non-ferrous materials.

Oxidation temperature

The oxidation temperature is the temperature at which the coating begins to decompose. The higher the oxidation temperature is, the more advantageous it is for cutting at high temperature. Although the room temperature hardness of TiAlN coatings may be lower than that of TiCN coatings, it has been proved that TiAlN coatings are much more effective than TiCN coatings in high temperature processing. The reason why TiAlN coating can maintain its hardness at high temperature is that a layer of alumina can be formed between the tool and the chip, and the alumina layer can transfer heat from the tool to the workpiece or chip. The cutting speed of cemented carbide tools is usually higher than that of high speed steel tools, which makes TiAlN the preferred coating for cemented carbide tools. The PVDTiAlN coating is usually used for cemented carbide drills and end milling cutters.

Grindability

Wear resistance refers to the ability of the coating to resist wear. Although the hardness of some workpiece materials may not be very high, the elements added in the production process and the process adopted may cause tool cutting edge cracking or bluntness.

Surface Lubrication

High friction coefficient will increase the cutting heat, which will shorten the coating life and even cause failure. Reducing friction coefficient can greatly prolong tool life. Fine, smooth or regularly textured coated surfaces help to reduce cutting heat, because smooth surfaces allow chips to slip rapidly off the rake face and reduce heat generation. Compared with uncoated cutting tools, coated cutting tools with better surface lubricity can also be processed at higher cutting speed, thus further avoiding high temperature welding with workpiece materials.

Anti caking property

The bonding resistance of the coating can prevent or reduce the chemical reaction between the tool and the material being processed, and avoid the deposition of the workpiece material on the tool. In the processing of non-ferrous metals (such as aluminium, brass, etc.), cutters often produce debris tumors (BUE), resulting in tool breakdown or workpiece size oversize. Once the processed material begins to adhere to the tool, the adherence will continue to expand. For example, when aluminium workpiece is processed with formed tap, the adherent aluminium on the tap will increase after each hole is processed, and eventually the diameter of the tap will become too large, resulting in the scrap of the workpiece size. Coatings with good adhesion resistance can play a very good role even in processing occasions where coolant performance is poor or concentration is insufficient.

Application of Coatings

Implementing high performance-to-price applications of coatings may depend on many factors, but for each specific processing application, there is usually only one or several feasible coating options. Correct selection of coatings and their properties may mean that there is a difference between marked improvement in processing performance and almost no improvement. Cutting depth, cutting speed and coolant may affect the application effect of tool coating.

Because there are many variables in the processing of a workpiece material, one of the best ways to determine which coating to choose is through trial cutting. Coating suppliers are continually developing more new coatings to further improve the high temperature, friction and wear resistance of coatings.

25 November, 2022

Bonjour, sauriez-vous quel est le temps nécessaire pour qu’un outil subisse un revêtement ? A première vue, je dirai que l’opération peut durer plusieurs heures, mais je n’ai pas d’idées précises..

Merci d’avance

28 November, 2022

Bonjour,
Merci de laisser un commentaire.
Il faut normalement 8 à 9 heures pour un revêtement PVD.
Meilleures salutations,

Leave a Reply

Your email address will not be published. Required fields are marked *

网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 日本人妻中文字幕有码视频-男女啪啪视频免费观看一区-青青草原综合在线视频-极品人妻少妇精品一区二区| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 狠狠操夜夜操天天干天天-午夜一级视频在线免费观看-我要看欧美一级黄色录像-91嫩草国产亚洲精品| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 极品尤物在线免费观看-超碰九七精品在线观看-午夜爱爱免费观看视频-日本免费人成黄页在线| 中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 久久777国产线看观看精品-日韩精品一区二区三区四区-美女射精视频在线观看-久草福利资源免费在线观看| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 草草草草伦理少妇高清-国内精品视频网站草草-国产精品精国产在线观看-国产麻豆激情av在线| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 极品尤物在线免费观看-超碰九七精品在线观看-午夜爱爱免费观看视频-日本免费人成黄页在线| 黄色大片一级在线观看-蜜臀91精品国产高清在线-色综合久久鬼色综合久久-九九热精品视频在线免费看| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av|