色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

With the continuous improvement of the quality requirements of machined products, people have invested a lot of time and energy in exploring methods and measures to improve product quality, but they have ignored the impact of machining allowance on product quality in the process of machining, and believe that only having allowance in the process of machining will not have much impact on product quality. In the actual machining process of mechanical products, it is found that the machining allowance of parts directly affects the product quality.

If the machining allowance is too small, it is difficult to eliminate the residual form and position errors and surface defects in the previous process; If the allowance is too large, it will not only increase the workload of machining, but also increase the consumption of materials, tools and energy. What is more serious is that the heat generated by cutting a large amount of machining allowance during the machining process will deform the parts, increase the machining difficulty of the parts and affect the product quality. Therefore, it is necessary to strictly control the machining allowance of the parts.

1. Concept of machining allowance

Machining allowance refers to the thickness of the metal layer cut from the machined surface during machining.

Machining allowance can be divided into process machining allowance and total machining allowance. Process machining allowance refers to the thickness of the metal layer cut off by a surface in a process, which depends on the difference between the dimensions of the adjacent processes before and after the process. Total machining allowance refers to the total thickness of the metal layer removed from a certain surface during the whole machining process of the part from blank to finished product,which is, the difference between the blank size on the same surface and the part size. The total machining allowance is equal to the sum of the machining allowance of each process.Machining allowance in a drawing are shown in Figure 1.

In the figure 1, the minimum machining allowance is the difference between the minimum process size of the previous process and the maximum process size of this process. The maximum machining allowance refers to the difference between the maximum process size of the previous process and the minimum process size of this process.

The variation range of process machining allowance (the difference between the maximum machining amount and the minimum machining allowance) is equal to the sum of the dimensional tolerances of the previous process and the current process. The tolerance zone of process dimension is generally specified in the entry direction of parts. For shaft parts, the basic size is the maximum process size, while for holes, it is the minimum process size.

How much does machining allowance affect machining accuracy? 2

2How does machining allowance affect processing accuracy?

How much does machining allowance affect machining accuracy? 3

2.1 when the machining allowance is excessive

Parts must produce cutting heat in the machining process. Part of these cutting heat is taken away by iron filings and cutting fluid, part is transferred to the tool, and part is transferred to the workpiece, which increases the temperature of the parts. The temperature is closely related to the machining allowance. With large machining allowance, the rough machining time will inevitably increase, and the cutting amount will also be appropriately increased, resulting in the continuous increase of cutting heat and the temperature of parts. The biggest harm caused by the temperature rise of parts is to deform the parts, especially for materials that are sensitive to temperature changes (such as stainless steel), and this thermal deformation runs through the whole processing process, increasing the processing difficulty and affecting the product quality.

For example, when machining slender shaft parts such as screw rods, the degree of freedom in the length direction is limited due to the one-on-one machining method. At this time, if the workpiece temperature is too high, thermal expansion will occur. When the extension in the length direction is blocked, the workpiece will inevitably produce bending deformation under the influence of stress, which will bring great trouble to the later processing. The bending deformation diagram of the workpiece after heating is shown in Figure 2. At this time, if you continue to process, process the protruding part until the finished product. After cooling to normal temperature, the part will produce reverse deformation under the action of stress, causing form and position errors and affecting the quality. The bending deformation diagram of the workpiece after normal temperature is shown in Figure 3. After expansion in the diameter direction, the increased part will be cut off, and cylindricity and dimensional error will occur after the workpiece is cooled. When grinding precision screw, the thermal deformation of workpiece will also cause pitch error.

2.2 what if the maching allowance is too small?

The machining allowance of parts should not be too large but also too small. If the machining allowance is too small, the residual geometric tolerances and surface defects in the previous process cannot be eliminated, thus affecting the product quality. In order to ensure the machining quality of parts, the minimum machining allowance left in each process shall meet the basic requirements of the minimum machining allowance in the previous process. The schematic diagram of the constituent factors of the minimum machining allowance of the inner hole of a part is shown in Figure 4. Figure 4a) shows the parts of the inner hole to be machined. If the axis o1-o1 deviates from the reference axis O-O with position error n when the hole is processed in the previous process, and the cylindricity error P (such as taper, ellipse, etc.) and surface roughness error H (as shown in Figure 4b) exist in the inner hole, in order to eliminate the geometric tolerance before boring, the minimum machining allowance on one side of the boring process should include the values of the above errors and defects. Considering the inevitable installation error of the workpiece during boring in this process, that is, the error E (as shown in Figure 4C) between the original hole axis O-O and the rotation axis O ‘- o’ after workpiece installation, and the dimensional tolerance T during boring in this process, the minimum machining allowance Z of this process can be expressed by the following formula:

Z≥t/2+h+p+n+e (side allowance)

How much does machining allowance affect machining accuracy? 4

Fig. 4 diagram of components of minimum machining allowance

For different parts and different processes, the values and forms of the above errors are also different. When determining the process machining allowance, it should be treated differently. For example, the slender shaft is easy to bend and deform, and the linear error of the busbar has exceeded the tolerance range of the diameter dimension, and the process machining allowance should be appropriately enlarged; For the process of machining with floating reamer and other tools to locate the machining surface itself, the influence of installation error E can be ignored, and the process machining allowance can be reduced accordingly; For some finishing processes mainly used to reduce surface roughness, the size of process machining allowance is only related to surface roughness H.

3.principles to select machining allowance for parts

The selection of machining allowance of parts has a great relationship with the material, size, accuracy grade and machining method of parts, which needs to be determined according to the specific situation. The following principles must be followed when determining the machining allowance of parts:

(1) The minimum machining allowance shall be adopted in order to shorten the machining time and reduce the machining cost of parts.

(2) Sufficient machining allowance shall be reserved, especially for the final process. The machining allowance shall ensure the accuracy and surface roughness specified on the drawing.

(3) When determining the machining allowance, the deformation caused by the heat treatment of the parts should be taken into account, otherwise scrap may occur.

(4) When determining the machining allowance, the machining method and equipment as well as the possible deformation in the machining process should be considered.

(5) The size of the machined parts shall be taken into account when determining the machining allowance. The larger the part, the larger the machining allowance. Because when the size of the part increases, the possibility of deformation caused by cutting force and internal stress will also increase.

4 Conclusion

In the actual production, the manufacturing methods of many parts are temporarily determined, such as: the centrifugal cast stainless steel sleeve is rolled and welded with steel plate; The cooler end cover, motor base and gear box sanding parts are replaced with weldments, etc. There are many uncertain factors in the manufacturing process of these parts, and its shape error is difficult to predict. Therefore, the three methods introduced in this paper to determine the machining allowance of these parts are not applicable to the determination of machining allowance of these parts, and can only be flexibly mastered in the actual manufacturing process.

Leave a Reply

Your email address will not be published. Required fields are marked *

国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 欧美国产日本韩国一区二区-麻豆天美东精91厂制片-亚洲成人自拍视频在线观看-娇妻互换享受高潮91九色| 综合一综合二综合久久-亚洲一区二区三区视频免费观看-亚洲国产中文字幕一区二区-日韩人妻一区二区三区蜜桃视频| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 精品精品国产午夜福利区免费观看-日韩精品一区二区三区2020-一区二区三区精彩视频在线观看-亚洲第一香蕉视频在线| 人人玩精品人妻丰满少妇-亚洲综合一区二区三区四区五区-亚洲av日韩av偷拍-亚洲欧美日韩一本一二| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 免费蜜臀av一区二区三区人妻-亚洲熟女少妇精品久久-国产精品毛片免费观看-亚洲精品国产二区中文字幕| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 草草草草伦理少妇高清-国内精品视频网站草草-国产精品精国产在线观看-国产麻豆激情av在线| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 极品尤物高颜值女神露脸-免费视频一区二区三区美女-麻豆av国语对白麻豆-亚洲精品国产午夜精品| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 国内精品国产三级国产-91制片厂麻豆果冻剧情观看-日韩中文字幕有码在线视频-精品人妻伦一区二区三区久久| 色婷婷av一区二区三区网-日韩在线不卡一二视频-中文字幕乱码免费在线视频-黄片欧美免费在线观看| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 国产精品午夜福利免费在线-99热首页这里只有精品-国产一区二区三区精品观看-宅男午夜一区二区三区| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片|